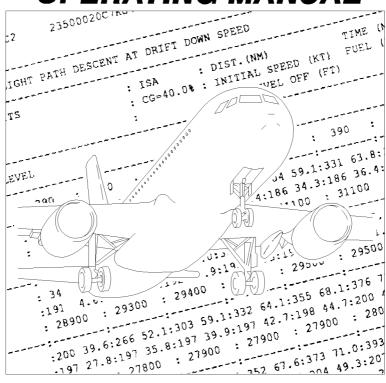
Flight Crew Operating Manual


FCOM A320 Volume 2

Customer Services

A318/A319/A320/A321

FLIGHT CREW OPERATING MANUAL

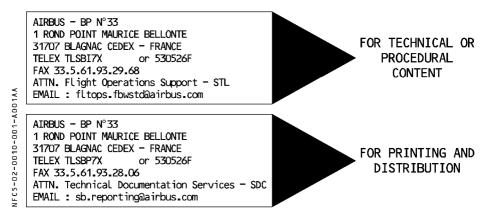
FLIGHT PREPARATION **2**

GAIRBUS®

· · · · · ·				
AIRBUS TRAINING A320		GENERAL INFORMATION	2.00.00	P 1
	-	CONTENTS	SEQ 001	REV 21
00.00	CONTENTS			
00.10	- Foreword - Comments - Content . - USE - Pagination - Revisions - How to in	DN OF THE MANUAL S - QUESTIONS - SUGGESTIONS SERT A REVISION	1 1 	
00.20	LIST OF CODE	S		
00.30	LIST OF NORI	AL REVISIONS		
00.35	RECORD OF T	EMPORARY REVISIONS		
00.36	LIST OF EFFE	CTIVE TEMPORARY REVISIONS		
00.70	CROSS REFER	ENCE TABLE		

- 00.75 HIGHLIGHTS
- 00.80 LIST OF EFFECTIVE PAGES
- 00.85 LIST OF MODIFICATIONS

ORGANIZATION OF THE MANUAL


FOREWORD

This manual complements the approved Flight Manual. Airbus has attempted to ensure that the data contained in this manual agrees with the data in the Flight Manual. If there is any disagreement, the Flight Manual is the final authority.

COMMENTS — QUESTIONS — SUGGESTIONS

All manual holders and users are encouraged to submit any Flight Crew Operating Manual questions and suggestions to :

R

CONTENT

R The Flight Crew Operating manual (FCOM), and the associated Quick Reference Handbook
 (QRH), are developed specifically for flight crews, in order to provide them with all of the
 necessary information about the operational, technical, procedural, and performance
 characteristics that are required for the safe and efficient aircraft operation. These manuals
 take into account all of the operational procedures to be applied during normal and
 abnormal/emergency situations that may occur on ground or in flight.

R The manuals are not designed to provide basic airmanship skills or piloting techniques.
 R They are intended for flight crews that have already been trained to fly this type of aircraft,
 R and are familiar with the aircraft's handling characteristics.

- R In addition, the purpose of the FCOM is to :
- R Be used as a comprehensive reference guide during initial and refresher flight crew training. Practical and training-related information is addressed in the Flight Crew Training Manual (FCTM).
- R Provide Airbus operators with a basis for their development of a customized airline
 R operations manual, in accordance with applicable requirements.

The content is divided into four volumes :

- Vol 1 = Systems' description (description of the aircraft systems).
- Vol 2 = Flight preparation (performance information, plus loading data).
- Vol 3 = Flight operations (operating procedures, techniques, and performance information).
- Vol 4 = FMGS pilot's guide (procedures for FMGS use).

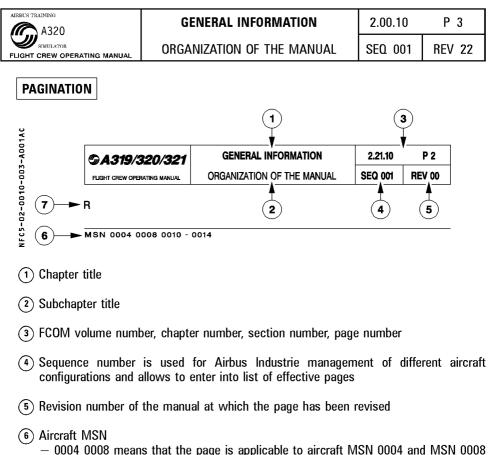
USE

As a comprehensive set of references, the FCOM :

- can be used by an operator's flight operations department to supplement its own crew manual
- $-\mbox{ can be issued directly to crew members for training and subsequently for line operations.}$

R DEFINITION OF A WARNING, CAUTION AND NOTE

- R The following are the official definitions of warnings, cautions and notes taken directly from
- R the JAR 25 / CS-25 and applicable to Airbus flight operational documentation :
- R "WARNING: An operating procedure, technique, etc. that may result in personal injury R or loss of life if not followed."
- R "CAUTION : An operating procedure, technique, etc. that may result in damage to equipment if not followed."
- R
 "NOTE
 : An operating procedure, technique, etc. considered essential to emphasize. Information contained in notes may also be safety related."


COMPLEMENTARY INFORMATION

The manual includes technical information required for training as well as complementary information.

- Where a paragraph or schematic is preceded by the heading FOR INFO the details given are considered to be nice to know. Knowledge of these items is not required for the type rating qualification.
- ECAM warnings and cautions are summarized in a table at the end of each chapter of the volume 1. Numeric values are given for information only.

OPTIONAL EQUIPMENT

The legend \lhd indicates that a paragraph or a shematic is applicable only if the related equipment is installed.

0010-0014 means that the page is applicable from aircraft MSN 0010 to MSN 0014
 ALL means that the page is applicable to all aircraft covered by the manual.

Correspondance between MSN and registration may be found in the cross reference table

(7) An R in front of a line indicates that the line has been revised.

REVISIONS

NORMAL REVISIONS

These are issued periodically to cover non-urgent corrections and changes and to add new data.

They are accompanied by filing instructions and an updated List of Effective Pages that includes customized pages.

A normal revision record sheet is at the front of each volume.

In addition, each volume has a list of modifications affecting the manual that gives a simple explanation of the technical content of each incorporated modification and its validity per aircraft.

R INTERMEDIATE REVISIONS

- R They are issued between normal revisions to cover changes in the definition of the aircraft
- R or changes in the composition of the fleet of an airline. They are numbered in ascending
- R sequence e.g. 20A, 20B, 20C... for intermediate revisions issued between normal revisions
- R 20 and 21.
- R They are accompanied by filing instructions and an updated list of effective pages.

TEMPORARY REVISIONS

Printed on yellow paper, the Temporary Revisions (TR) are issued to cover urgent matters arising between normal revisions. They are accompanied by filing instructions and an updated customized list of effective TR.

 \dot{A} yellow temporary revision record sheet is at the front of each volume. It is to be filled by the FCOM's owner.

INCORPORATION OF SERVICE BULLETINS IN THE MANUAL

When a service bulletin has been accomplished on one or more aircraft of the operator fleet, and notified to Airbus Industrie, all affected manuals will reflect the new aircraft configuration at next revision. If judged necessary by Airbus Industrie or requested by the operator, a temporary revision or an intermediate revision is issued between normal revisions.

OPERATIONS ENGINEERING BULLETINS

The Operations Engineering Bulletins (OEB) are issued as the need arises to give operators revised or new, but significant, technical and procedural information.

OEBs come with an OEB record sheet. This record sheet is to be filled by the FCOM's owner.

They are accompanied by filing instructions and an updated customized list of effective OEBs.

P 5

ORGANIZATION OF THE MANUAL

HOW TO INSERT A REVISION

FILING INSTRUCTIONS

Use the filing instructions as follows :

- REMOVE : The page must be removed. It may be replaced by a new page if associated with an INSERT instruction. If not, the page is cancelled.
- INSERT : The page must be inserted. If not associated with a REMOVE instruction, the page is new for the operator fleet and does not replace an existing one.

The column NOTE indicates the reason for change. It states EFFECTIVITY CHANGE ONLY if the page is only revised due to effectivity change and not due to technical content.

LIST OF EFFECTIVE PAGES (LEP)

The manual after revision must comply with the LEP, which lists all the pages that are in the manual. The new pages are indicated by N and the revised pages by R.

BEST WAY TO GET UPDATED DOCUMENTATION

R As soon as any change has been completed on any airplane, the best way to get updated documentation is to advise :

AIRBUS INDUSTRIE BP 33 31707 BLAGNAC CEDEX FRANCE Telex : TLSBP7X.. or 530526F FAX 33.5.61.93.28.06 ATTN : Customer Service Directorate – Technical Documentation Services (AI/SE – D) AIRBUS TRAINING A320 SIMILATOR FLIGHT CREW OPERATING MANUAL

To simplify automatic LEP processing some modifications have been grouped under a common code.

	CODE	DESIGNATION
R	0001	Mod : 33374 = (33374+34862+37809)
R	0003	Mod: 20268 = (20139 + 20268 + 22129)
	0004	Mod: 20268 = (20268 + L) = (20139 + 20268 + 22129) = (20139 + 20268 + 22129 + L)
	0005	Mod : (20268+25647) = (20268+25647+ACA)
R	0006	Mod : 20057 = (20057+33374+34862)
R	0007	Mod: (20057 + 33374) = (20057 + 33374 + 34862 + 37809)
	0008	Mod : 24404 = 24405 = (24404+25800) = (24405+25800) = (25800+27727) = (24404+25800+27727) = (24405+25800+27727)
	0009	STD = Mod : 25800 = (24405 + 25501) = (24405 + 25501 + 25800)
_	0010	Mod: 24405 = (24405 + 25800) = (25800 + 27727) = (24405 + 25800 + 27727)
R R	0011	Mod: (20024 + 20167) = (20024 + 20167 + 37331 + 37332)
K R R	0012	Mod : (20024+20167+34456) = (20024+20167+37226) = (20024+20167+28378+34456) = (20024+20167+34456+37331+37332) = (20024+20167+37226+37331+37332)
	0013	IAE V2522 = V2524 = V2527M = V2530 = V2533 = (Mod : 28160+IAE V2500 = V2527 = V2527E)
	0014	CFM 56-5-A4 = A5 = (Mod : 28160 + CFM 56-5-A1 = A3)
	0015	CFM 56-5-B1 = B2 = B3 = B5 = B6 = B7 = B8 = (Mod : 28160 + CFM 56-5-B4)
	0017	Mod: 24404 = (24404 + 25800) = (25800 + 27727) = (24404 + 25800 + 27727)
	0018	Mod: 25530 = (25530 + 25800) = (25800 + 27727) = (25530 + 25800 + 27727)
	0019	STD = Mod : 25800 = (24404 + 25502) = (24404 + 25502 + 25800)
	0020	Mod: (22013+36310) = (22013+25800+36310)
R R	0022	Mod : (20024+20167+28378) = (20024+20167+33973) = (20024+20167+28378+37331+37332) = (20024+20167+33973+37331+37332)
	0023	$ \begin{array}{l} Mod: (20268 + 25530) = (20268 + 25530 + 25800) = (20268 + 25800 + 27727) = \\ (20268 + 25530 + 25800 + 27727) \end{array} $
	0024	
	0025	$ \begin{array}{l} Mod: (20024 + 20167 + 22013) = (20024 + 20167 + 22013 + 22802) = \\ (20024 + 20167 + 20586 + 22013 + 22802) \end{array} $
_	0026	Mod: (20024+20167+21120) = (20024+20167+21120+22802)
R	0027	Mod: (20024 + 20167 + 28238 + 32635) = (20024 + 20167 + 28238 + 32635 + 37331 + 37332)
ň	0028	$ \begin{array}{l} Mod: (20040 + 20065 + 20106 + 20107 + 21103 + 22013 + 30422) = \\ (20040 + 20065 + 20106 + 20107 + 21103 + 22013 + 25453 + 30422) \end{array} $
	0029	STD = Mod : 22802 = (20586 + 22802)
	0030	Mod: 22013 = (22013 + 22802) = (20586 + 22013 + 22802)
<u> </u>	0031	Mod: 20024 = (20024 + 22802) = (20024 + 20586 + 22802)
R R	0032	Mod: (23124+25615) = (25615+28009) = (23124+38140) = (28009+38140)
R	0036	Mod : (20268+26965) = (20268+31106)
R R	0037	Mod : $31896 = 31897 = 32401 = 32402 = 32475 = 32929 = 35119 = (31896+32402) = (31897+32401) = (31896+32332+32475) = (31897+32333+32929) = (31896+32332+35119)$
R R R	0038	Mod : 31896 = 31897 = 32401 = 32402 = 32475 = 32929 = 35119 = (31896+32402) = (31897+31401) = (31896+32332+32475) = (31897+32333+32929) = (31896+32332+35119)
	0041	Mod : 22461 = 23408 = (22461+23408)

A320 SIMULATOR

FLIGHT CREW OPERATING MANUAL

GENERAL INFORMATION

2.00.20

P 2

SEQ 001 | REV 40

CODE	DESIGNATION
0042	Mod: (20268+22013) = (20268+22013+25141)
0043	Mod: (20268+25714) = (20268+25714+26131)
0044	$ \begin{array}{l} Mod: 22461 = 23108 = 23871 = (22461 + 26018) = (22461 + 26645) = (23108 + 26018) \\ = (23871 + 26018) = (23871 + 26645) = (22461 + 23108 + 23109) = \\ (22461 + 26018 + 26645) = (23871 + 26018 + 26645) = (22461 + 23108 + 23109 + 26018) \\ \end{array} $
0045	Mod: (20268+22461) = (20268+23408) = (20268+22461+23408) = (20139+20268+22129+22461+23408)
0048	Mod: 20268 = (20268 + 25800) = (20268 + 24405 + 25501) = (20268 + 24405 + 25501 + 25800)
0049	Mod: (20268+24405) = (20268+24405+25800) = (20268+25800+27727) = (20268+24405+25800+27727)
0050	Mod: (20268+24404) = (20268+24404+25800) = (20268+25800+27727) = (20268+24404+25800+27727)
0051	
0052	Mod : 20268 = (20268+25800)
0053	Mod: (20268 + 28238) = (20268 + 25800 + 28238)
0054	Mod: (32401+33323) = (32402+33323) = (32475+33323) = (32929+33323)
0055	STD = Mod : (20139 + 22129) = (20139 + 22129 + 28160 + 28917)
0056	Mod: 20139 = (20139 + 28160 + 28917)
0057	Mod: (20024+28378+31286) = (20024+31286+37226)
0058	Mod: 22461 = 23408 = (22461 + 23408)
0059	Mod: (27620+30020+33323+35542) = (27620+30020+33323+37285+35542)
0060	Mod: (20268+28722+56-5-B4) = (20268+28722+36297+56-5-B5) = (20268+28722+36311+56-5-B6) = (20268+28722+36885+56-5-B6)
0061	Mod: 33323 = (27620 + 33323 + 33497) = (33323 + 34809 + 37588) = (27620 + 33323 + 33497 + 34809 + 37588)
0062	$ \begin{array}{l} Mod: (27620 + 33323) = (27620 + 33323 + 37285) = (27620 + 33323 + 37285 + 33497) = \\ (27620 + 33323 + 34809 + 37588) = (27620 + 33323 + 34809 + 37588 + 37285) = \\ (27620 + 33323 + 34809 + 37588 + 37285 + 33497) \end{array} $
0063	$ \begin{array}{l} Mod : (27620 + 33323 + 34809) = (27620 + 33323 + 34313) = \\ (27620 + 33323 + 37285 + 34809) = (27620 + 33323 + 37285 + 34313) = \\ (27620 + 33323 + 33497 + 37285 + 34809) = (27620 + 33323 + 33497 + 37285 + 34313) \end{array} $
0064	Mod: (33223 + 34809) = (33323 + 34313) = (27620 + 33323 + 33497 + 34809) = (27620 + 33323 + 33497 + 34313)
0065	$ \begin{array}{l} Mod: (33323+32401+34809) = (33323+32402+34313) = (33323+32929+34809) = \\ (33323+32475+34313) = (33323+32401+34809+31426) = \\ (33323+32402+34313+31426) = (33323+32929+34809+31426) = \\ (33323+32475+34313+31426) = (33323+32929+34809+31426) = \\ \end{array} $
0066	$ \begin{array}{l} Mod: 33323 = (32401 + 33323 + 37588) = (32929 + 33323 + 37588) = \\ (32401 + 33323 + 35651) = (33323 + 32401 + 34809 + 37588) = \\ (33323 + 32929 + 34809 + 37588) \end{array} $
0067	Mod: (20268 + 24044 + 28721 + 31607) = (20268 + 24044 + 28960 + 31607)
0068	Mod: (20268+25647) = (20268+ACA)
0069	Mod $:26723 = 27410 = 27639 = 27763 = 30277 = 30835 = 30836$
0070	$ \begin{array}{l} Mod: 20268 = (20268 + 25800) = (20268 + 24404 + 35404) = (20268 + 27727 + 35404) = \\ (20268 + 24404 + 25800 + 35404) = (20268 + 24404 + 27727 + 35404) = \\ (20268 + 25800 + 27727 + 35404) = (20268 + 24404 + 25800 + 27727 + 35404) \\ \end{array} $
0071	$ \begin{array}{l} Mod: 20268 = (20268 + 25800) = (20268 + 24404 + 25502) = (20268 + 24404 + 35404) = \\ (20268 + 27727 + 35404) = (20268 + 24404 + 25502 + 25800) = \\ (20268 + 24404 + 25800 + 35404) = (20268 + 24404 + 27727 + 35404) = \\ (20268 + 25800 + 27727 + 35404) = (20268 + 24404 + 25800 + 27727 + 35404) \\ \end{array} $

GENERAL INFORMATION

2.00.20

Ρ3

LIST OF CODES

SEQ 001 | REV 40

	CODE	DESIGNATION
	0072	$\begin{array}{l} \text{STD} = \text{Mod} : 25800 = (24404 + 35404) = (27727 + 35404) = (24404 + 27727 + 35404) = \\ (24404 + 25800 + 35404) = (25800 + 27727 + 35404) = (224404 + 25800 + 27727 + 35404) \end{array}$
	0073	$\begin{array}{l} \text{STD} = \text{Mod}: 24404 = 24405 = (24404 + 25502) = (24405 + 25501) = (24404 + 35404) = \\ (27727 + 35404) = (24404 + 25502 + 25800) = (24405 + 25501 + 25800) = \\ (24404 + 27727 + 35404) = (24404 + 25800 + 35404) = (25800 + 27727 + 35404) = \\ (24404 + 25800 + 27727 + 35404) = (24404 + 25800 + 35404) = (25800 + 27727 + 35404) = \\ \end{array}$
R R R	0074	Mod : $(33323+31426) = (32401+33323+37588+31426) = (32401+33323+35651+31426) = (32929+33323+37588+31426) = (33323+32401+34809+31426+37588) = (33323+32929+34809+31426+37588)$
	0075	Mod : (20268+24044+25647) = (20268+24044+ACA) = (20268+24044+25647+ACA)
	0076	Mod : (20268+28721) = (20268+28960)
	0077	Mod: (20268+24044+28721) = (20268+24044+28960)
	0078	Mod : (20268+28238) = (20268+25800+28238)
	0079	Mod : 20268 = (20268+25647)
	0080	Mod : (20268+25647) = (ACA = CMM) = (20268+25647+ACA = CMM)
	0081	STD = Mod : 24105 = 27773 = (24105 + 27773) = (24105 + 27773 + 28471)
	0082	Mod : (20268+24044+25647) = (20268+24044+ACA) = (20268+24044+25647+ACA) = (20268+24044+25647+28960+ACA)
	0083	Mod: (20024 + 20167 + 22013 + 30422) = (20024 + 20167 + 22013 + 25453 + 30422)
	0084	Mod : $(20024+25453) = (20024+20164+25453) = (20024+20586+25453)$
R R R	0085	$ \begin{array}{l} Mod: (27620 + 33323 + 37285 + 33497) = (27620 + 33323 + 34809 + 37588) = \\ (27620 + 33323 + 34809 + 37588 + 37285) = \\ (27620 + 33323 + 34809 + 37588 + 37285 + 33497) \end{array} $
	0086	Mod : (20024+22013+25453) = (20024+22013+30422) = (20024+22013+25453+30422)
_	0087	Mod : (20024+22013+25453+31286) = (20024+22013+30422+31286) = (20024+22013+25453+30422+31286)
R R	0088	Mod : (20268+32121/56-5-B4) = (20268+32121+36297/56-5-B5) = (20268+32121+36311/56-5-B6) = (20268+32121+36885/56-5-B5)
R R R	0089	Mod : (33323+34809) = (33323+34313) = (27620+33323+33497+34809) = (27620+33323+33497+34313)
	0090	$ \begin{array}{l} Mod: (20268+24946+26965) = (20268+24946+27773) = (20268+25951+26965) = \\ (20268+25951+27773) = (20268+26760+26965) = (20268+26760+27773) = \\ (20268+26965+32150) = (20268+26965+32238) = (20268+26965+32239) = \\ (20268+26965+32311) = (20268+27773+32150) = (20268+27773+32238) = \\ (20268+27773+32239) = (20268+27773+32311) = (20268+26965+35040) = \\ (20268+27773+35040) \end{array} $
	0091	Mod: 22013 = (22013 + 32656) = (22013 + 34221) = (22013 + 34221 + 32656)
	0092	$ \begin{array}{l} Mod: (24946+26965) = (24946+27773) = (25951+26965) = (25951+27773) = \\ (26760+26965) = (26760+27773) = (26965+32150) = (26965+32238) = \\ (26965+32239) = (26965+32311) = (27773+32150) = (27773+32238) = \\ (27773+32239) = (27773+32311) = (26965+35040) = (27773+35040) \\ \end{array} $
	0093	Mod: 25530 = (25530 + 25800) = (25800 + 27727) = (25530 + 25800 + 27727)
	0094	$ \begin{array}{l} Mod: (24946+25615+26965) = (24946+25615+27773) = (25615+25951+26965) = \\ (25615+25951+27773) = (25615+26760+26965) = (25615+26760+27773) = \\ (25615+26965+32150) = (25615+26965+32238) = (25615+26965+32239) = \\ (25615+26965+32311) = (25615+27773+32150) = (25615+27773+32238) = \\ (25615+27773+32239) = (25615+27773+32311) = (25615+26965+35040) = \\ (25615+27773+325040) = \\ \end{array}$
I		[23013 21113 T 33040]

AIRBUS TRAINING

A320

SIMULATOR

FLIGHT CREW OPERATING MANUAL

GENERAL INFORMATION

2.00.20

LIST OF CODES

SEQ 001 | REV 40

Ρ4

CODE	DESIGNATION
0095	$ \begin{array}{l} Mod: (20268+24946+26965) = (20268+24946+27773) = (20268+25951+26965) = \\ (20268+25951+27773) = (20268+26760+26965) = (20268+26760+27773) = \\ (20268+26965+32150) = (20268+26965+32238) = (20268+26965+32239) = \\ (20268+26965+32311) = (20268+2773+32150) = (20268+27773+32238) = \\ (20268+27773+32239) = (20268+27773+3211) = (20268+26965+35040) = \\ (20268+27773+35040) = (20268+24946+26965+US) = (20268+24946+27773+US) = \\ = (20268+25951+26965+US) = (20268+25951+27773+US) = \\ \end{array}$
	$\begin{array}{l} (20268+26760+26965+US) = (20268+26760+27773+US) = \\ (20268+26965+32150+US) = (20268+26965+32238+US) = \\ (20268+26965+32239+US) = (20268+26965+32311+US) = \\ (20268+27773+32150+US) = (20268+27773+32238+US) = \\ (20268+27773+32239+US) = (20268+27773+32311+US) \end{array}$
0096	Mod: (20024+20164+20586) = (20024+20164+37565)
0097	Mod : (20268+26965) or (20268+31106)
0098	Mod : (20268+25647+26965) = (20268+25647+31106) = (20268+26965+ACA = MXA) = (20268+31106+ACA = MXA)
0099	Mod: (20268 + 25647 + 26965) = (20268 + 25647 + 31106)
0100	Mod : (20024+20167+22013) = (20024+20167+20586+22013) = (20024+20167+22013+37565)
0101	Mod: (20024 + 20586 + 28238) = (20024 + 28238 + 37565)
0102	$ \begin{array}{l} Mod: (22461+27773+32311) = (22461+27773+32150) = (22461+27773+24946) = \\ (22461+27773+26760) = (22461+27773+32238) = (22461+27773+25951) = \\ (22461+27773+32239) = (22461+26965+32311) = (22461+26965+32150) = \\ (22461+26965+25951) = (22461+26965+32239) = (22461+26965+32238) = \\ (22461+26965+25951) = (22461+26965+32239) = 22461+26965+32150) = \\ (22461+27773+35040) = (23408+27773+32311) = (23408+27773+32150) = \\ (23408+27773+25951) = (22408+27773+32239) = (22408+26965+32238) = \\ (23408+27773+25951) = (23408+27773+32239) = (23408+26965+3211) = \\ (23408+26965+32150) = (23408+26965+24946) = (23408+26965+32239) = \\ (23408+26965+32238) = (23408+26965+25951) = (23408+26965+32239) = \\ (23408+26965+32238) = (23408+27773+35040) = (22461+23408+27773+32238) = \\ (22461+23408+27773+25951) = (22461+23408+27773+22946) = \\ (22461+23408+27773+25951) = (22461+23408+27773+32238) = \\ (22461+23408+27773+25951) = (22461+23408+27773+32238) = \\ (22461+23408+27773+25951) = (22461+23408+27773+32238) = \\ (22461+23408+27773+25951) = (22461+23408+27773+32238) = \\ (22461+23408+26965+32239) = (22461+23408+27773+32238) = \\ (22461+23408+26965+32239) = (22461+23408+27773+32238) = \\ (22461+23408+26965+32239) = (22461+23408+27773+32238) = \\ (22461+23408+26965+32239) = (22461+23408+2773+325951) = \\ (22461+23408+27773+355951) = (22461+23408+26965+325951) = \\ (22461+23408+26965+32239) = (22461+23408+26965+325951) = \\ (22461+23408+26965+32239) = (22461+23408+26965+25951) = \\ (22461+23408+26965+32239) = (22461+23408+26965+25951) = \\ (22461+23408+27773+35040) = (22461+23408+26965+25951) = \\ (22461+23408+27773+35040) = (22461+23408+26965+35040) = \\ (22461+23408+27773+35040) = (22461+23408+26965+35040) = \\ (22461+23408+27773+35040) = (22461+23408+26965+35040) = \\ (22461+23408+27773+35040) = (22461+23408+26965+35040) = \\ (22461+23408+27773+35040) = (22461+23408+26965+35040) = \\ (22461+23408+27773+35040) = \\ (22461+23408+27773+35040) = \\ (22461+23408+27773+35040) = \\ (22461+23408+27773+35040) = \\ (22461+23408+27773+35040) = \\ (22461+23408+27773+3504$
0103	Mod : (20268+25647+CFM 56-5-B6) = (ACA = MXA+CFM 56-5-B6)
0104	Mod: (20024 + 20167 + 21120 + 22013) = (20024 + 20167 + 20586 + 21120 + 22013)
0105	$ \begin{array}{l} \text{Mod}: (20268 + 24946 + 25647 + 27773) &= (20268 + 25647 + 27773 + 32311) \\ (20268 + 25647 + 27773 + 32150) &= (20268 + 25647 + 26760 + 27773) \\ (20268 + 25647 + 2773 + 32238) &= (20268 + 25647 + 26760 + 27773) \\ (20268 + 25647 + 25951 + 27773) \\ (20268 + 25647 + 26965 + 32311) &= (20268 + 25647 + 26965 + 32150) \\ (20268 + 25647 + 26965 + 322311) \\ (20268 + 25647 + 26965 + 32239) \\ (20268 + 25647 + 26965 + 32239) \\ (20268 + 25647 + 26965 + 32239) \\ (20268 + 25647 + 26965 + 32239) \\ (20268 + 25647 + 26965 + 35040) \\ (20268 + 25647 + 26965 + 35040) \\ (20268 + 27773 + 32150 + ACA) \\ (20268 + 27773 + 32150 + ACA) \\ (20268 + 27773 + 32238 + ACA) \\ (20268 + 27773 + 32238 + ACA) \\ (20268 + 25951 + 27773 + ACA) \\ (20268 + 26965 + 32311 + ACA) \\ (20268 + 26965 + 32310 + ACA) \\ (20268 + 26965 + 3230 + ACA) \\ (20268 + 26965 + 3200 + ACA) \\ (2026$

(A

A320

FLIGHT CREW OPERATING MANUAL

GENERAL INFORMATION

2.00.20

Р5

LIST OF CODES

SEQ 001 | REV 40

CODE	DESIGNATION
0106	Mod: (20268+22461+27773+32311) = (20268+22461+27773+32150) =
0100	(20268+22461+27773+24946) = (20268+22461+27773+26760) =
	(20268 + 22461 + 27773 + 32238) = (20268 + 22461 + 27773 + 25951) =
	(20268 + 22461 + 27773 + 32239) = (20268 + 22461 + 26965 + 32311) =
	(20268 + 22461 + 26965 + 32150) = (20268 + 22461 + 26965 + 24946) =
	(20268+22461+26965+26760) = (20268+22461+26965+32238) = (20268+22461+26965+32239) = (20268+22461+26965+3266+2666+2666+2666+2666+2666+2666+26
	(20268 + 22461 + 26965 + 35040) = (20268 + 22461 + 26963 + 32253) =
	(20268 + 23408 + 27773 + 32311) = (20268 + 23408 + 27773 + 32150) =
	(20268 + 23408 + 27773 + 24946) = (20268 + 23408 + 27773 + 26760) =
	(20268 + 23408 + 27773 + 32238) = (20268 + 23408 + 27773 + 25951) = (20268 + 23408 + 27773 + 25951)
	(20268+23408+27773+32239) = (20268+23408+26965+32311) = (20268+23408+26965+32150) = (20268+23408+26965+24946) =
	(20268 + 23408 + 26965 + 26760) = (20268 + 23408 + 26965 + 32238) =
	(20268 + 23408 + 26965 + 25951) = (20268 + 23408 + 26965 + 32239) =
	(20268 + 23408 + 26965 + 35040) = (20268 + 23408 + 27773 + 35040) =
	(20268 + 22461 + 23408 + 27773 + 32311) = (20268 + 22461 + 23408 + 27773 + 32150) = (20268 + 22461 + 23408 + 27773 + 32150) = (20268 + 22461 + 23408 + 27773 + 32150)
	(20268+22461+23408+27773+24946) = (20268+22461+23408+27773+26760) = (20268+22461+23408+27773+32238) = (20268+22461+23408+27773+25951) = (20268+22461+23408+27773+25961) = (20268+2468+27773+25961) = (20268+27773+25961) = (20268+22468+27773+25961) = (20268+22468+27773+25961) = (20268+22468+27773+25961) = (20268+22468+27773+25961) = (20268+22468+27773+268+278+278+278+27773+268+278+278+278+278+278+278+278+278+278+27
	(20268 + 22461 + 23408 + 26965 + 32311) = (20268 + 22461 + 23408 + 26965 + 32150) =
	(20268 + 22461 + 23408 + 26965 + 24946) = (20268 + 22461 + 23408 + 26965 + 26760) =
	(20268 + 22461 + 23408 + 26965 + 32238) = (20268 + 22461 + 23408 + 26965 + 25951) =
	(20268+22461+23408+26965+32239) = (20268+22461+23408+26965+35040) =
0107	(20268+22461+23408+27773+35040)
0107	Mod : $(24946+25647+27773) = (25647+27773+32311) = (25647+27773+32150) = (25647+26760+27773) = (25647+27773+32238) = (25647+27773+32239) = (25647+27773+3277773+327773+327773+327773+3277773+327773+3277773+327773+327773+327773+327773+3277773+327773+3277773+327773+327773+327773+3277773+327773+327773+3277773+3277773+327773+3277773+327773+3277773+3277773+3277773+3277773+3277773+3277773+3277773+3277773+3277773+3277773+3277773+3277773+32777773+3277773+3277777777$
	(25647 + 25951 + 27773) = (24946 + 25647 + 26965) = (25647 + 26965 + 32331) =
	(25647 + 26965 + 32150) = (25647 + 26760 + 26965) = (25647 + 26965 + 32238) =
	(25647 + 26965 + 32239) = (25647 + 25951 + 26965) = (25647 + 26965 + 35040) =
	(25647 + 27773 + 35040) = (24946 + 27773 + ACA) = (27773 + 32311 + ACA) = (27773 + 32312 + ACA) = (27773 + 32312 + ACA)
	(27773+32150+ACA) = (26760+27773+ACA) = (27773+32238+ACA) =(27773+32239+ACA) = (25951+27773+ACA) = (24946+26965+ACA) =
	(26965+32311+ACA) = (26965+32150+ACA) = (26760+26965+ACA) =
	(26965+32238+ACA) = (26965+32239+ACA) = (25951+26965+ACA) =
	(26965+35040+ACA) = (27773+35040+ACA)
0108	Mod: (24946+25647+26965) = (24946+25647+27773) = (25647+25951+26965) =
	(25647 + 26760 + 26965) = (25647 + 25951 + 27773) = (25647 + 26760 + 27773) =
	(25647 + 26965 + 32150) = (25647 + 26965 + 32238) = (25647 + 26965 + 32239) = (25647 + 26965 + 32239) = (25647 + 27772 + 27772 + 27772) = (25647 + 27772 + 27772) = (25647 + 27772) = (2567772) = (256772) = (256772) = (256772) =
	(25647 + 26965 + 32311) = (25647 + 27773 + 32150) = (25647 + 27773 + 32238) = (25647 + 27773 + 32239) = (25647 + 27773 + 32311) = (25647 + 26965 + 35040) =
	(25647 + 27773 + 35040) = (24946 + 26965 + ACA) = (24946 + 27773 + ACA) =
	(25951+26965+ACA) = (26760+26965+ACA) = (25951+27773+ACA) =
	(26760 + 27773 + ACA) = (26965 + 32150 + ACA) = (26965 + 32238 + ACA) =
	(26965+32239+ACA) = (26965+32311+ACA) = (27773+32150+ACA) = (27773+32238+ACA) = (27773+32239+ACA) = (27773+32311+ACA) =
	(26965+35040+ACA) = (27773+35040+ACA) = (27773+35040+ACA)
0109	Mod : $(20268+25647) = ACA = (20268+25647+ACA)$
0110	Mod : $(20268+25647) = ACA = MXA = (20268+ACA = MXA) = (20268+25647+ACA)$
	= MXA) = (20200 + 230477 = AGA = MAA = (20200 + AGA = MAA) = (20200 + 23047 + AGA = MXA)
0112	Mod: 34456 = (20024 + 34456) = (20024 + 37226) = (20024 + 20164 + 34456) =
	(20024+20586+34456)
0113	Mod: 20268 = (20268 + 25800) = (20268 + 25530 + 26505) =
	(20268+25530+25800+26505)
0114	STD = Mod : 25800 = (25530 + 26505) = (25530 + 25800 + 26505)
0115	Mod : (20268+31106+33323) = (20268+26965+33323)
0116	Mod: (20268 + 25647 + 31106) = (20268 + 25647 + 26965)
0118	Mod: (20268+32619) = (20268+33239) = (20268+32619+33239)
•	

AIRBUS TRAINING

A320 [[[SIMULATOR

GENERAL INFORMATION

2.00.20

SEQ 001 **REV 40**

P 6

	LIST OF CODES	SEQ 001	
CODE	DESIGNATION		
	268+28342+32619) = (20268+28342+33239) = 3342+32619+33239)	=	
(25951+26 (26760+22 (26965+33 (26965+33 (26965+33 (27773+33 (27773+33 (27773+33 (27773+33 (24946+22) (25951+26 (26965+33 (26965+33)	946+26965+20268+32619) = (24946+27773+5965+20268+32619) = (25951+27773+20268+32619) = (25951+27773+20268+2150+20268+32619) = (26965+32238+20268+2239+20268+32619) = (26965+32311+20268+5040+20268+32619) = (27773+35040+20268+2239+20268+32619) = (27773+32238+20268+2239+20268+32619) = (27773+32238+20268+5965+20268+33239) = (24946+27773+20268+5965+20268+33239) = (25951+27773+20268+5965+20268+33239) = (26965+32238+20268+2239+20268+33239) = (26965+32238+20268+2239+20268+33239) = (26965+32238+20268+2239+20268+33239) = (26965+32238+20268+2239+20268+33239) = (26965+32238+20268+2239+20268+33239) = (27773+32238+20268+2239+20268+33239) = (27773+32238+20268+2239+20268+33239) = (27773+32238+20268+2239+20268+33239) = (27773+32238+20268+2239+20268+33239) = (27773+32238+20268+2239+20268+33239) = (27773+32238+20268+2239+20268+33239) = (27773+32238+20268+2239+20268+33239) = (27773+32238+20268+2239+20268+33239) = (27773+32238+20268+2239+20268+33239) = (27773+32238+20268+2239+20268+32339) = (26965+32238+20268+2239+20268+33239) = (27773+32238+20268+2239+20268+33239) = (26965+32238+20268+2239+20268+33239) = (26965+32238+20268+2239+20268+33239) = (26965+32238+20268+2239+20268+2239+20268+32339) = (26965+32238+20268+2239+20268+32339) = (26965+32238+20268+2239+20268+2239+20268+2239+20268+2239+20268+2239+20268+2239) = (27773+32238+20268+2239+20268+2239+20268+2239+20268+2239+20268+2239+20268+2239+20268+2239+20268+2239+20268+2239+20268+2239+20268+2239+2068+2239+2068+2238+20268+2238+20268+2239+2068+2239+2068+2239+2068+2238+20268+2238+20268+2238+20268+2239+2068+2238+2068+2068+2238+2068+2068+2238+2068+2068+2068+2068+2068+2068+2068+206	-32619) = -32619) = -32619) = -32619 = -32619 = -32619 = -32619) = -32619) = -33239) = -33239) = -33239) = -33239) = -33239) =	

0120	M = (24946 + 26965 + 20268 + 32619) = (24946 + 27773 + 20268 + 27773 + 20268 + 27773) = (24946 + 27773 + 20268 + 27773) = (24946 + 277773 + 20268 + 27773) = (24946 + 277773 + 20268 + 277773) = (24946 + 277773 + 20268 + 277773) = (24946 + 2777773 + 20268 + 2777773) = (24946 + 277777777777777777777777777777777777
	(25951+26965+20268+32619) = (25951+27773+20268+32619) =
	(26760 + 26965 + 20268 + 32619) = (26760 + 27773 + 20268 + 32619) =
	(26965+32150+20268+32619) = (26965+32238+20268+32619) =
	(26965+32239+20268+32619) = (26965+32311+20268+32619) =
	(26965+35040+20268+32619) = (27773+35040+20268+32619) =
	(27773 + 32150 + 20268 + 32619) = (27773 + 32238 + 20268 + 32619) =
	(27773 + 32239 + 20268 + 32619) = (27773 + 32311 + 20268 + 32619) = (27773
	(24946 + 26965 + 20268 + 33239) = (24946 + 27773 + 20268 + 33239) = (24946 + 27773 + 20268 + 33239)
	(25951+26965+20268+33239) = (25951+27773+20268+33239) = (26760+26965+20268+33239) = (26760+27773+20268+27773+20268+27773+20268+27773+20268+27773+20268+277773+20268+27773+20268+277773+20268+277773+20268+277773+2777773+277773+277773+277773+2777773+2777773+2777773+277777777
	(26965+32150+20268+33239) = (26965+32238+20268+33239) =
	(26965+32239+20268+33239) = (26965+32311+20268+33239) =
	(27773 + 32150 + 20268 + 33239) = (27773 + 32238 + 20268 + 33239) =
	(27773 + 32239 + 20268 + 33239) = (27773 + 32311 + 20268 + 33239) =
	(24946 + 26965 + 20268 + 32619 + 33239) = (24946 + 27773 + 20268 + 32619 + 33239) =
	(25951 + 26965 + 20268 + 32619 + 33239) = (25951 + 27773 + 20268 + 32619 + 33239) =
	(26760 + 26965 + 20268 + 32619 + 33239) = (26760 + 27773 + 20268 + 32619 + 33239) =
	(26965+32150+20268+32619+33239) = (26965+32238+20268+32619+33239) = "
	(26965+32239+20268+32619+33239) = (26965+32311+20268+32619+33239) =
	(27773+32150+20268+32619+33239) = (27773+32238+20268+32619+33239) =
	(27773 + 32239 + 20268 + 32619 + 33239) = (27773 + 32311 + 20268 + 32619 + 33239) =
	(ACA + 20268 + 25647 + 27773 + 32311) = (ACA + 20268 + 25647 + 27773 + 32150) =
	(ACA + 20268 + 25647 + 27773 + 24946) = (ACA + 20268 + 25647 + 27773 + 26760) = (ACA + 20268 + 25647 + 27773 + 26760) = (ACA + 20268 + 25647 + 27773 + 26760)
	(ACA + 20268+25647+27773+32238) = (ACA + 20268+25647+27773+32239) = (ACA + 20268+25647+27773+25951) = (ACA + 20268+25647+26965+32311) =
	(ACA + 20206 + 25047 + 27775 + 25951) = (ACA + 20206 + 25047 + 20905 + 52511) = (ACA + 20268 + 25647 + 26965 + 24946) = (ACA + 20268 + 25647 + 26965 + 26965 + 24946) = (ACA + 20268 + 25647 + 26965
	(ACA + 20268 + 25647 + 26965 + 26760) = (ACA + 20268 + 25647 + 26965 + 32238) =
	(ACA + 20268 + 25647 + 26965 + 32239) = (ACA + 20268 + 25647 + 26965 + 32239) = (ACA + 20268 + 25647 + 26965 + 25951) =
	(ACA + 20268 + 25647 + 26965 + 35040) = (ACA + 20268 + 25647 + 27773 + 35040)
0121	Mod : $(20024 + 28378) = (20024 + 33973) = (20024 + 20164 + 33973) =$
0121	(20024+20164+20586+28378)
0122	Mod: 25453 = 28378 = 30422 = 33973 = 34456 = 37226
0123	Mod: (20024+28378) = (20024+33973) = (20024+34456) = (20024+37226)
0124	Mod: (20268+26965) = (20268+31106)
0125	Mod: (20268 + 28342 + 31106) = (20268 + 28342 + 26965)
0126	Mod: (20024+22013) = (22013+24024+32115+32622)
0127	Mod: (20024+30422) = (20024+20164+30422) = (20024+20586+30422) =
	(20024 + 25453 + 30422) = (20024 + 20164 + 25453 + 30422) =
	(20024 + 20586 + 25453 + 30422) = (20024 + 25453 + 30422 + 32255)
0129	Mod: $(20268 + 24946 + 26965 + 33323) = (20268 + 24946 + 27773 + 33323) =$
	(20268 + 25951 + 26965 + 33323) = (20268 + 25951 + 27773 + 33323) =
	(20268 + 26760 + 26965 + 33323) = (20268 + 26760 + 27773 + 33323) =
	(20268 + 26965 + 32150 + 33323) = (20268 + 26965 + 32238 + 33323) =
	(20268 + 26965 + 32239 + 33323) = (20268 + 26965 + 32311 + 33323) = (20268 + 26965 + 32311 + 33323) = (20268 + 26965 + 32311 + 33323)
	(20268 + 27773 + 32150 + 33323) = (20268 + 27773 + 32238 + 33323) = (20268 + 27773 + 32238 + 33323)
	(20268+27773+32239+33323) = (20268+27773+32311+33323) = (20268+26965+35040+33323) = (20268+27773+35040+33323)
0100	
0130	Mod: (24946+26965+33323) = (24946+27773+33323) = (25951+26965+333323) = (25951+26965+3665+3665+3665+3665+3665+3665+3665+
	(25951+27773+33323) = (26760+26965+33323) = (26760+27773+33323) = (26965+32150+33323) = (26965+32238+33323) = (26965+32239+3323) = (26965+32239+3323) = (26965+32239+3323) = (26965+32239+3323) = (26965+32239+3239+323) = (26965+3239+3239+323) = (26965+3239+3239+323) = (26965+33323) = (26965+33323) = (26965+33323) = (26965+33323) = (26965+3239+323) = (26965+3239+323) = (26965+3239+323) = (26965+3239+3239+323) = (26965+3239+3239+3239+323) = (26965+3239+3239+3239+3239+3239+3239+3239+323
	(26965+32311+33323) = (27773+32150+33323) = (27773+32238+33323) =
	(27773 + 32239 + 33323) = (27773 + 32130 + 33323) = (26965 + 35040 + 33323) =
	(27773+35040+33323)
0131	Mod: (20268+28342+31106) = (202268+26965+28342)
	· ······· ······ · ······

GENERAL INFORMATION

LIST OF CODES

2.00.20

Ρ7

SEQ 001 | REV 40

CODE	DESIGNATION
0132	Mod: (20268+31106) = (20268+26965)
0133	$ \begin{array}{l} \text{Mod:} (20268+24946+26965+25647) = (20268+24946+27773+25647) = \\ (20268+25951+26965+25647) = (20268+25951+27773+25647) = \\ (20268+26760+26965+25647) = (20268+26760+27773+25647) = \\ (20268+26965+32150+25647) = (20268+26965+32238+25647) = \\ (20268+26965+32239+25647) = (20268+26965+32311+25647) = \\ (20268+27773+32150+25647) = (20268+27773+32238+25647) = \\ (20268+27773+32150+25647) = (20268+27773+32311+25647) = \\ (20268+26965+35040+25647) = (20268+27773+35040+25647) = \\ \end{array}$
0134	Mod: $22013 = 24105 = (24946 + 26965) = (24946 + 27773) = (25951 + 26965) = (25951 + 27773) = (26760 + 26965) = (26760 + 27773) = (26965 + 32150) = (26965 + 32238) = (26965 + 32239) = (26965 + 32231) = (26965 + 35040) = (27773 + 35040) = (27773 + 32150) = (27773 + 32238) = (27773 + 32239) = (27773 + 32231)$
0135	Mod : $(32401+33323+31426) = (32402+33323+31426) = (32475+33323+31426) = (32929+33323+31426)$
0136	$ \begin{array}{l} Mod: (24946+26965+20268+32656) = (24946+27773+20268+32656) = \\ (25951+26965+20268+32656) = (25951+27773+20268+32656) = \\ (26760+26965+20268+32656) = (26760+27773+20268+32656) = \\ (26965+32150+20268+32656) = (26965+32238+20268+32656) = \\ (26965+32239+20268+32656) = (26965+32311+20268+32656) = \\ (26965+35040+20268+32656) = (27773+35040+20268+32656) = \\ (27773+32150+20268+32656) = (27773+32238+20268+32656) = \\ (27773+32239+20268+32656) = (27773+32311+20268+32656) = \\ (27773+32239+20268+32656) = (27773+32311+20268+32656) = \\ \end{array}$
0137	Mod: (21103 + 21897 + 21898 + 22013) = (21103 + 21897 + 22013)
0138	Mod: (21103 + 22013 + 25453 + 30422) = (21103 + 22013 + 30422)
0139	Mod: (20040 + 20065 + 20106 + 20107) = (20040 + 20065 + 20106)
0140	Mod: 36310 = (25800 + 36310)
0141	Mod: (20040 + 20065 + 20106 + 21103) = (20040 + 20065 + 20106 + 20107 + 21105)
0142	Mod: (21103+30243) = (21103+30243+33223)
0143	Mod : 21103 = (20107+21103)
0144	Mod: (21103+24105+28238) = (21103+24105+28238+32635)
0145	Mod : $(20040+20065+21103+24105+24821+26372) =$ (20040+20065+21103+24105+24821+25940)
0146	
0147	Mod: 25453 = 28378 = 28378 = 30422 = 33973 = 34456 = 37226
0148	Mod : (22013+36310) = (22013+36310+25800)
0149	Mod: (20268+36310) = (20268+25800+36310)
0150	Mod: (21103 + 22013 + 25453 + 25940) = (21103 + 21897 + 21898 + 22013 + 25453 + 25940)
0151	$ \begin{array}{l} Mod:(20040+20065+21103+22013+25453+25940)=\\ (21103+21897+21898+22013+25453+25940) \end{array} $
0153	Mod: (21103 + 24105 + 28238 + 32457) = (21103 + 24105 + 28238 + 32457 + 32635)
0154	$ \begin{array}{l} Mod: (20040 + 20065 + 21103 + 24105 + 24821) = (21897 + 21898 + 21103 + 24105 + 24821) \\ = (21103 + 21897 + 21898 + 24105 + 24821 + 26638 + 26639) \end{array} $
0155	$ \begin{array}{l} Mod: 36311 = 36297 = 36885 = (25800 + 36311) = (25800 + 36297) = (25800 + 36885) \\ = (25530 + 26505 + 36311) = (25530 + 26505 + 36297) = (25530 + 26505 + 36885) = \\ (25800 + 25530 + 26505 + 36297) = (25800 + 25530 + 26505 + 36311) = \\ (25800 + 25530 + 26505 + 36885) \end{array} $
0156	Mod: (20024+20167+21120+22013) = (L+20024+20167+21120+22013+22802)
0157	Mod :(21103+28378) = (21103+25714+26131) = (21103+25714+26131+28330+28335+28378)

R R

R R R R R R R R R R AIRBUS TRAINING

A320 STAULATOR

FLIGHT CREW OPERATING MANUAL

GENERAL INFORMATION

2.00.20

LIST OF CODES

.00.20

SEQ 001 | REV 40

P 8

CODE	DESIGNATION
0158	Mod : (20268+31106) = (20268+26965)
0159	Mod: $22013 = 24105 = (27773 + 32311) = (27773 + 32150) = (27773 + 24946) = (27773 + 26760) = (27773 + 32238) = (27773 + 32239) = (26965 + 32311) = (26965 + 32150) = (26965 + 24946) = (26965 + 26760) = (26965 + 32238) = (26965 + 32239) = (26965 + 35040) = (27773 + 35040)$
0160	Mod: (20268 + 24044 + 31701) = (20268 + 24044 + 34818)
0161	$ \begin{array}{l} Mod:(20268+24946+26965+33171)=(20268+24946+27773+33171)=\\ (20268+25951+26965+33171)=(20268+25951+27773+33171)=\\ (20268+26760+26965+33171)=(20268+26760+27773+33171)=\\ (20268+26965+32150+33171)=(20268+26965+32238+33171)=\\ (20268+26965+32239+33171)=(20268+26965+32311+33171)=\\ (20268+27773+32150+33171)=(20268+27773+32238+33171)=\\ (20268+27773+32239+33171)=(20268+27773+32311+33171)=\\ (20268+26965+35040+33171)=(20268+27773+35040+33171) \end{array}$
0162	Mod: (20268+32656) = (20268+26342+34221)
0163	Mod : 20268 = (20268+28342+34221)
0167	Mod : (21103+25714+26131+28330+28335+28378)
0168	$ \begin{array}{l} Mod: (20040 + 20065 + 21103 + 24105) = (21103 + 21897 + 21898 + 24105) = \\ (21103 + 24105 + 26638 + 26639) = (21103 + 24105 + 28319 + 28322) = \\ (21103 + 21897 + 21898 + 24105 + 26638 + 26639) \end{array} $
0169	Mod : $(21897+22013+25453) = (22013+25453+25905) = (22013+25453+25907) = (22013+25453+21898)$
0170	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
0171	Mod: (20268+26965+28342) = (20268+28342+31106) = (20268+28342)
0173	Mod : STD = 26925 = (30397 + 33865)
0174	Mod: (21103 + 24105 + 37226) = (21103 + 24105 + 28319 + 28322 + 37226)
0175	$ \begin{array}{l} Mod: 20268 = (20268 + 25800) = (20268 + 24404) = (20268 + 24404 + 25502) = \\ (20268 + 24404 + 25800) = (20268 + 25800 + 27727) = (20268 + 24404 + 25502 + 25800) = \\ (20268 + 24404 + 25800 + 27727) \end{array} $
0176	$ \begin{array}{l} Mod:(20268+24946+26965+34041)=(20268+24946+27773+34041)=\\ (20268+25951+26965+34041)=(20268+25951+27773+34041)=\\ (20268+26760+26965+34041)=(20268+26760+27773+34041)=\\ (20268+26965+32150+34041)=(20268+26965+32238+34041)=\\ (20268+26965+32239+34041)=(20268+26965+32311+34041)=\\ (20268+27773+32150+34041)=(20268+27773+32238+34041)=\\ (20268+27773+32239+34041)=(20268+27773+32311+34041)=\\ (20268+26965+35040+34041)=(20268+27773+35040+34041)=\\ \end{array}$
0177	Mod: (21103+34456) = (20040+20065+21103+34456)
0178	Mod: (21103 + 24105 + 28319 + 28322 + 31687) = (21103 + 24105 + 31687)
0179	
0180	Mod: (20040 + 20065 + 21103 + 28378) = (20040 + 20065 + 21103 + 28378 + 34456)
0183	Mod: (24105+30020) = (20268+24105+30020)
0184	$ \begin{array}{l} Mod: (23871+24946+26965) = (23871+24946+27773) = (23871+25951+26965) = \\ (23871+25951+27773) = (23871+26760+26965) = (23871+26760+27773) = \\ (23871+26965+32150) = (23871+26965+32238) = (23871+26965+32239) = \\ (23871+26965+32311) = (23871+27773+32150) = (23871+27773+32238) = \\ (23871+27773+32239) = (23871+27773+32311) = (23871+26965+35040) = \\ (23871+27773+35040) \end{array} $

R R

R R AIRBUS TRAINING

(A

A320

FLIGHT CREW OPERATING MANUAL

GENERAL INFORMATION

2.00.20

Ρ9

LIST OF CODES

SEQ 001 | REV 40

CODE	DESIGNATION
0185	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
0186	Mod: 20268 = (20268 + 26346 + N:US)
0187	Mod: 20268 = (20268 + 26346 + 22129) = (20268 + 26346 + N:US)
0188	$ \begin{array}{l} Mod: 22013 = 24105 = (20268 + 22013) = (20268 + 24105) = \\ (24946 + 26965 + Eng:56 \cdot 5A1) = (24946 + 27773 + Eng:56 \cdot 5A1) = \\ (25951 + 26965 + Eng:56 \cdot 5A1) = (25951 + 27773 + Eng:56 \cdot 5A1) = \\ (26760 + 26965 + Eng:56 \cdot 5A1) = (26760 + 27773 + Eng:56 \cdot 5A1) = \\ (26965 + 32150 + Eng:56 \cdot 5A1) = (26965 + 32238 + Eng:56 \cdot 5A1) = \\ (26965 + 32239 + Eng:56 \cdot 5A1) = (26965 + 32231 + Eng:56 \cdot 5A1) = \\ (27773 + 32150 + Eng:56 \cdot 5A1) = (27773 + 32238 + Eng:56 \cdot 5A1) = \\ (27773 + 32239 + Eng:56 \cdot 5A1) = (27773 + 32238 + Eng:56 \cdot 5A1) = \\ (26965 + 35040 + Eng:56 \cdot 5A1) = (27773 + 35040 + Eng:56 \cdot 5A1) = \\ (26965 + 35040 + Eng:56 \cdot 5A1) = (27773 + 35040 + Eng:56 \cdot 5A1) = \\ \end{array}$
0189	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
0190	$ \begin{array}{ll} Mod: 22013 = 24105 = (24946 + 26965 + Eng:56{\text{-}}5A1) = (24946 + 27773 + Eng:56{\text{-}}5A1) = \\ (25951 + 26965 + Eng:56{\text{-}}5A1) = (25951 + 27773 + Eng:56{\text{-}}5A1) = \\ (26760 + 26965 + Eng:56{\text{-}}5A1) = (26760 + 27773 + Eng:56{\text{-}}5A1) = \\ (26965 + 32150 + Eng:56{\text{-}}5A1) = (26965 + 32238 + Eng:56{\text{-}}5A1) = \\ (26965 + 32239 + Eng:56{\text{-}}5A1) = (26965 + 32311 + Eng:56{\text{-}}5A1) = \\ (27773 + 32150 + Eng:56{\text{-}}5A1) = (27773 + 32238 + Eng:56{\text{-}}5A1) = \\ (27773 + 32239 + Eng:56{\text{-}}5A1) = (27773 + 3231 + Eng:56{\text{-}}5A1) = \\ (26965 + 35040 + Eng:56{\text{-}}5A1) = (27773 + 35040 + Eng:56{\text{-}}5A1) \\ \end{array} $
0191	$ \begin{array}{ll} Mod:(22013+25647)=(24105+25647)=(24946+25647+26965)=\\ (24946+25647+27773)=(25647+25951+26965)=(25647+26965+22150)=\\ (25647+25951+27773)=(25647+26760+27773)=(25647+26965+32150)=\\ (25647+26965+32238)=(25647+26965+32239)=(25647+26965+32150)=\\ (25647+27773+32150)=(25647+27773+32238)=(25647+27773+32239)=\\ (25647+27773+32311)=(25647+27773+32238)=(25647+26965+35040)=\\ (24946+26965+ACA)=(24946+27773+ACA)=(25951+26965+ACA)=\\ (26760+26965+ACA)=(25951+27773+ACA)=(26760+27773+ACA)=\\ (26965+32150+ACA)=(26965+32238+ACA)=(26965+32239+ACA)=\\ (26965+32311+ACA)=(27773+32150+ACA)=(27773+32238+ACA)=\\ (27773+32239+ACA)=(27773+32311+ACA)=(27773+35040+ACA)=\\ (26965+35040+ACA)=\\ \end{array}$
0192	Mod: $22013 = 24105 = (24946 + 26965) = (24946 + 27773) = (25951 + 26965) = (25951 + 27773) = (26760 + 26965) = (26760 + 27773) = (26965 + 32150) = (26965 + 32238) = (26965 + 32239) = (26965 + 32311) = (27773 + 32150) = (27773 + 32238) = (27773 + 32239) = (27773 + 32311) = (27773 + 35040) = (26965 + 35040)$
0193	$ \begin{array}{l} Mod: 28685 = 28686 = (27714 + 28685 + 31528) = (27714 + 28685) = (27714 + 28686) \\ = (27714 + 28686 + 31039) \end{array} $
0194	Mod : $31528 = 31039 = 25910 = 27714 = (28685 + 34506) = (28686 + 34506) = (27714 + 28685 + 31528 + 34506)$
0195	$ \begin{array}{l} Mod:(27714+36998)=(31039+36998)=(31528+36998)=(27714+35165+36998)\\ =(31039+35165+36998)=(31528+35165+36998) \end{array} $
0196	Mod: (27714+35165) = (35165+31039) = (35165+31528)
0198	$ \begin{array}{llllllllllllllllllllllllllllllllllll$

R R R R R

R R R R R R R R R R R R

R R

R R R R

A320

GENERAL INFORMATION

2.00.20

SIMULATOR FLIGHT CREW OPERATING MANUAL LIST OF CODES

SEQ 001 | REV 40

P 10

1	CODE	DESIGNATION
	0199	Mod: (23779+31039) = (23779+31528) = (23779+27714+31039) =
		(23779 + 27714 + 31528) = (23779 + 27714 + 28685 + 31528 + 34506)
	0200	
	0201	Mod : $31039 = 31528 = (27714 + 31039) = (27714 + 31528) = (27714 + 28685 + 31528 + 34506)$
	0202	Mod: 25453 = 28238 = 28378 = 30422 = 33973 = 34456
	0203	STD = Mod : (31896+32332) = (31897+32333)
	0204	Mod : (30397+33323) = (27620+30397+33323+33497)
	0205	Mod : (25615+23124) = (25615+28009)
	0206	Mod: (21103+28378+33223) = (21103+25714+26131+33223)
	0207	Mod : (27620+30397+33323) = (27620+30397+33323+37285)
	0208	Mod : (25615+32619) = (25615+33239)
	0209	Mod: (27620 + 30020 + 30397 + 33323) = (27620 + 30020 + 30397 + 33323 + 37285)
	0210	$ \begin{array}{l} Mod: (27620 + 30020 + 30397 + 33323 + 35542) = \\ (27620 + 30020 + 30397 + 33323 + 37285 + 35542) \end{array} $
	0211	Mod: (30397 + 33323 + 34097 + 34126) = (27620 + 30397 + 33323 + 33497 + 34097 + 34126)
	0212	
	0213	Mod: (20268+34221) = (20268+34221+32656)
	0214	Mod: (24105+34221) = (24105+34221+32656)
	0215	
	0216	"Mod : $(20268+36297) = (20268+24946+26965+36297) =$ (20268+24946+27773+36297) = (20268+25951+26965+36297) = (20268+25951+27773+36297) = (20268+26760+26965+36297) = (20268+26760+27773+36297) = (20268+26965+32150+36297) = (20268+26965+32238+36297) = (20268+26965+32239+36297) = (20268+26965+32238+36297) = (20268+27773+32150+36297) = (20268+27773+32238+36297) = (20268+27773+32239+36297) = (20268+27773+32238+36297) = (20268+27773+32239+36297) = (20268+27773+32238+36297) = (20268+26965+35040+36297) = (20268+27773+325040+36297)"
	0217	Mod: (28177+30020+30397+34097+34126)
	0218	Mod : (30020+30397+34097+34126+35542)
	0219	Mod: (20268+36311) = (20268+36297)
	0220	Mod: (27620+30020+30397+33323+34097+34126) = (27620+30020+30397+33323+34097+34126+37285)
	0221	Mod: (28177+30020+30397+34097+34126+35542)
	0222	$ \begin{array}{l} Mod: (27620 + 30020 + 30397 + 33323 + 34097 + 34126 + 35542) = \\ (27620 + 30020 + 30397 + 33323 + 34097 + 34126 + 37285 + 35542) \end{array} $

FLIGHT CREW OPERATING MANUAL

GENERAL INFORMATION

2.00.20

20 P 11

SEQ 001 | REV 40

CODE	DESIGNATION
0223	$ \begin{array}{l} Mod: 36750 = (24946 + 25615 + 26965 + 36750) = (24946 + 25615 + 27773 + 36750) = \\ (25615 + 25951 + 26965 + 36750) = (25615 + 25951 + 27773 + 36750) = \\ (25615 + 26760 + 26965 + 36750) = (25615 + 26760 + 27773 + 36750) = \\ (25615 + 26965 + 32239 + 36750) = (25615 + 26965 + 32238 + 36750) = \\ (25615 + 26965 + 32239 + 36750) = (25615 + 26965 + 32231 + 36750) = \\ (25615 + 27773 + 32150 + 36750) = (25615 + 27773 + 32238 + 36750) = \\ (25615 + 27773 + 32239 + 36750) = (25615 + 27773 + 32311 + 36750) = \\ (25615 + 26965 + 35040 + 36750) = (25615 + 27773 + 35040 + 36750) = \\ (25615 + 26965 + 35040 + 36750) = (25615 + 27773 + 35040 + 36750) = \\ \end{array} $
0224	$ \begin{array}{l} Mod: 26750 = (24946 + 26965 + 36750) = (24946 + 27773 + 36750) = \\ (25951 + 26965 + 36750) = (25951 + 27773 + 36750) = (26760 + 26965 + 36750) = \\ (26760 + 27773 + 36750) = (26965 + 32150 + 36750) = (26965 + 32238 + 36750) = \\ (26965 + 32239 + 36750) = (26965 + 32311 + 36750) = (27773 + 32150 + 36750) = \\ (27773 + 32238 + 36750) = (27773 + 32239 + 36750) = (27773 + 32311 + 36750) = \\ (26965 + 35040 + 36750) = (27773 + 35040 + 36750) = \\ \end{array} $
0225	$ \begin{array}{l} Mod: (20268+36311) = (20268+36297) = (20268+25800+36311) = \\ (20268+25800+36297) = (20268+25530+26505+36311) = \\ (20268+25530+26505+36297) = (20268+25800+25530+26505+36311) = \\ (20268+25800+25530+26505+36297) \end{array} $
0226	$ \begin{array}{l} Mod: (31528+30397) = (31039+30397) = (25910+30397) = (27714+30397) = \\ (28685+34506+30397) = (28686+34506+30397) = (27714+30397+31528) = \\ (25910+27714+30397) = (25910+27714+30397+31039) = \\ (27714+28685+30797+34506) = (27714+28685+30397+31528) = \\ (27714+28685+31528+34506+30397) = (25910+27714+28685+30397+34506) \\ \end{array} $
0229	Mod: (20268+34818) = (20268+31701)
0230	$ \begin{array}{llllllllllllllllllllllllllllllllllll$

R R R R R AIRBUS TRAINING

A320

' SIMULATOR

FLIGHT CREW OPERATING MANUAL

GENERAL INFORMATION

2.00.20

SEQ 001 | REV 40

P 12

CODE	DESIGNATION
0231	Mod: (20268+36311) = (20268+36885) = (20268+24946+26965+36311) =
	(20268 + 24946 + 27773 + 36311) = (20268 + 25951 + 26965 + 36311) =
	(20268+25951+27773+36311) = (20268+26760+26965+36311) = (20268+26760+27773+36311) = (20268+26760+27773+36311) = (20268+26965+32150+36311) =
	(20268 + 26965 + 32238 + 36311) = (20268 + 26965 + 32239 + 36311) =
	(20268 + 26965 + 32311 + 36311) = (20268 + 27773 + 32150 + 36311) =
	(20268 + 27773 + 32238 + 36311) = (20268 + 27773 + 32239 + 36311) = (20268 + 27773 + 32239 + 36311) = (20268 + 27773 + 32239 + 36311)
	(20268+27773+32311+36311) = (20268+26965+35040+36311) = (20268+27773+35040+36311) = (20268+24946+26965+36885) =
	(20268 + 24946 + 27773 + 36885) = (20268 + 25951 + 26965 + 36885) =
	(20268+25951+27773+36885) = (20268+26760+26965+36885) =
	(20268 + 26760 + 27773 + 36885) = (20268 + 26965 + 32150 + 36885) = (20268 + 26965 + 32150 + 36885)
	(20268+26965+32238+36885) = (20268+26965+32239+36885) = (20268+26965+32311+36885) = (20268+27773+32150+36885) =
	(20268 + 27773 + 32238 + 36885) = (20268 + 27773 + 32239 + 36885) =
	(20268 + 27773 + 32311 + 36885) = (20268 + 26965 + 35040 + 36885) =
	(20268+27773+35040+36885)
0232	Mod: (20268+36297) = (20268+36311) = (20268+36885)
0233	Mod: 30397 = (27714 + 28685 + 30397 + 31528)
0234	"Mod: (20268+36311) = (20268+36297) = (20268+36885) = (20268+25800+36311) = (20268+25800+36297) = (20268+25800+36885) = (20268+25530+26505+36311)
	= (20268 + 25530 + 26505 + 36297) = (20268 + 25530 + 26505 + 36885) = (20268 + 25530 + 26505 + 36287)
	(20268 + 25800 + 25530 + 26505 + 36297) = (20268 + 25800 + 25530 + 26505 + 36311) =
	(20268+25800+25530+26505+36885) "
0235	Mod: (20268+36311) = (20268+36885) = (20268+36311/US) = (20268+36885/US)
0236	Mod: (27620+30020+33323) = (27620+30020+33323+37285)
0237	Mod: (27620 + 33323) = (27620 + 33323 + 37285)
0250	Mod: 20164 = 32255 = (20164 + 30961) = (20164 + 24373 + 30961)
0251	Mod: (27714+30397+36998) = (30397+31039+36998) = (30397+31528+36988) = (30397+31528+36988) = (30397+31528+36988) = (30397+31528+36988) = (30397+31588+36988) = (30397+31588+36988) = (30397+31588+36988) = (30397+31588+36988) = (30397+31588+36988) = (30397+31588+36988) = (30397+31588+36988) = (30397+31588+36988) = (30397+31688+36888+36888+36888+36888+36888+36888+36888+36888+36888+36888+36888+36888+368888+368888+36888+36888+36888+36888+36888+36888+368888+368888+36888+368888+36888+36888+368888+368888+36888+36888+368888+36888+36888+36888+36888+368888+36888+368888+36888+36888+36888+36888+368888+36888+368888+36888+36888+368888+36888+36888+36888+368888+36888+36888+36888888+368888+368888+3688888888
	(27714+30397+35165+36998) = (30397+31039+35165+36998) = (30397+31528+35165+36998)
0252	Mod : $(21103 + 24105 + 28319 + 28322 + 37226)$
0253	56-5-B4 = (25800+56-5-B4) = (36297+56-5-B5) = (36311+56-5-B6) =
0200	(36885+56-5-B6) = (25800+36297+56-5-B5) = (25800+36311+56-5-B6) =
	(25800+36885+56-5-B6)
0254	Mod: (20024+20167) = (20024+20167+21120+23869)
0255	Mod: (20024 + 20167 + 28238) = (20024 + 20167 + 28238 + 32635 + 35649) = (20024 + 20167 + 28238 + 32635 + 35649) = (20024 + 20167 + 28238 + 32635 + 35649) = (20024 + 20167 + 28238 + 32635 + 35649) = (20024 + 20167 + 28238 + 32635 + 35649) = (20024 + 20167 + 28238 + 32635 + 35649) = (20024 + 20167 + 28238 + 32635 + 35649) = (20024 + 20167 + 28238 + 32635 + 35649) = (20024 + 20167 + 28238 + 32635 + 35649) = (20024 + 20167 + 28238 + 32635 + 35649) = (20024 + 20167 + 28238 + 32635 + 35649) = (20024 + 20167 + 28238 + 32635 + 35649) = (20024 + 20167 + 28238 + 32635 + 35649) = (20024 + 20167 + 28238 + 32635 + 35649) = (20024 + 20167 + 28238 + 32635 + 35649) = (20024 + 20167 + 28238 + 32635 + 35649) = (20024 + 20167 + 36648 + 36668 + 36668 + 36668 + 366888 + 366888 + 366888 + 366888 + 366888 + 366888 + 366888 + 36688 + 36688 + 366888 + 366888 + 36688888 + 3668888 + 366888 + 366888 + 366888 + 366888 + 36688 +
	(20024+20167+28238+37331+37332) = (20024+20167+28238+32635+35649+37331+37332)
0256	Mod: (20024+20167+34456) = (20024+20167+28378+34456) =
0230	(20024 + 20167 + 34456 + 37331) = (20024 + 20167 + 37226 + 37331)
0257	Mod: (20024+20167+28378+37331) = (20024+20167+33973+37331)
0258	Mod: (20024 + 20167 + 28238 + 37331) = (20024 + 20167 + 28238 + 32635 + 35649 + 37331)
0259	Mod : (20024+20167+28238+32635+37331)
0260	Mod : (20040+20065+20106+20107+21103+22013+25453)
0261	Mod : $26723 = 27410 = 27639 = 27763 = 30277 = 30835 = 30836 = 37985$
0262	Mod: (25615+26018+26645) = (26018+26645+38140) =
	(23108+25615+26018+26645)

FLIGHT CREW OPERATING MANUAL

GENERAL INFORMATION

2.00.20

P 13

| SEC

SEQ 001 | REV 40

CODE	DESIGNATION
0263	Mod: (25615+26018) = (26018+38140) = (23108+25615+26018)
0264	Mod: 25615 = 38140 = (23108 + 25615)
0263	

AIRBUS TRAINING	
(C) A320	
SIMULATOR	
FLIGHT CREW OPERATING	MANUAL

GENERAL INFORMATION

LIST OF NORMAL REVISIONS

SEQ 001

R

N° ISSUE DATE 01 SEP 1987 02 MAR 1988 03 MAY 1988 04 JUL 1988 05 AUG 1988 06 OCT 1988 07 JAN 1989 08 MAR 1989 09 APR 1989 10 AUG 1989 11 DEC 1989 12 SEP 1990 13 JUL 1991 14 MAY 1992 15 DEC 1992 16 JUN 1993 17 NOV 1993 18 MAY 1994 19 MAY 1995 20 SEP 1996 21 JUN 97 22 JAN 98 23 AUG 98 24 JAN 99 25 JUN 99 26 DEC 99 27 MAY 00 28 OCT 00			
02 MAR 1988 03 MAY 1988 04 JUL 1988 05 AUG 1988 06 OCT 1988 07 JAN 1989 08 MAR 1989 09 APR 1989 10 AUG 1989 11 DEC 1989 12 SEP 1990 13 JUL 1991 14 MAY 1992 15 DEC 1992 16 JUN 1993 17 NOV 1993 18 MAY 1994 19 MAY 1995 20 SEP 1996 21 JUN 97 22 JAN 98 23 AUG 98 24 JAN 99 25 JUN 99 26 DEC 99 27 MAY 00	N°	ISSUE DATE	
03 MAY 1988 04 JUL 1988 05 AUG 1988 06 OCT 1988 07 JAN 1989 08 MAR 1989 09 APR 1989 10 AUG 1989 11 DEC 1989 12 SEP 1990 13 JUL 1991 14 MAY 1992 15 DEC 1992 16 JUN 1993 17 NOV 1993 18 MAY 1994 19 MAY 1995 20 SEP 1996 21 JUN 97 22 JAN 98 23 AUG 98 24 JAN 99 25 JUN 99 26 DEC 99 27 MAY 00	01	SEP 1987	
04 JUL 1988 05 AUG 1988 06 OCT 1988 07 JAN 1989 08 MAR 1989 09 APR 1989 10 AUG 1989 11 DEC 1989 12 SEP 1990 13 JUL 1991 14 MAY 1992 15 DEC 1992 16 JUN 1993 17 NOV 1993 18 MAY 1994 19 MAY 1995 20 SEP 1996 21 JUN 97 22 JAN 98 23 AUG 98 24 JAN 99 25 JUN 97 26 DEC 99 27 MAY 00	02	MAR 1988	
05 AUG 1988 06 OCT 1988 07 JAN 1989 08 MAR 1989 09 APR 1989 10 AUG 1989 11 DEC 1989 12 SEP 1990 13 JUL 1991 14 MAY 1992 15 DEC 1992 16 JUN 1993 17 NOV 1993 18 MAY 1994 19 MAY 1995 20 SEP 1996 21 JUN 97 22 JAN 98 23 AUG 98 24 JAN 99 25 JUN 97 26 DEC 99 27 MAY 00	03	MAY 1988	
06 OCT 1988 07 JAN 1989 08 MAR 1989 09 APR 1989 10 AUG 1989 11 DEC 1989 12 SEP 1990 13 JUL 1991 14 MAY 1992 15 DEC 1992 16 JUN 1993 17 NOV 1993 18 MAY 1994 19 MAY 1995 20 SEP 1996 21 JUN 97 22 JAN 98 23 AUG 98 24 JAN 99 25 JUN 99 26 DEC 99 27 MAY 00	04	JUL 1988	
07 JAN 1989 08 MAR 1989 09 APR 1989 10 AUG 1989 11 DEC 1989 12 SEP 1990 13 JUL 1991 14 MAY 1992 15 DEC 1992 16 JUN 1993 17 NOV 1993 18 MAY 1995 20 SEP 1996 21 JUN 97 22 JAN 98 23 AUG 98 24 JAN 99 25 JUN 99 26 DEC 99 27 MAY 00	05	AUG 1988	
08 MAR 1989 09 APR 1989 10 AUG 1989 11 DEC 1989 12 SEP 1990 13 JUL 1991 14 MAY 1992 15 DEC 1992 16 JUN 1993 17 NOV 1993 18 MAY 1995 20 SEP 1996 21 JUN 97 22 JAN 98 23 AUG 98 24 JAN 99 25 JUN 99 26 DEC 99 27 MAY 00	06	OCT 1988	
09 APR 1989 10 AUG 1989 11 DEC 1989 12 SEP 1990 13 JUL 1991 14 MAY 1992 15 DEC 1992 16 JUN 1993 17 NOV 1993 18 MAY 1994 19 MAY 1995 20 SEP 1996 21 JUN 97 22 JAN 98 23 AUG 98 24 JAN 99 25 JUN 99 26 DEC 99 27 MAY 00	07	JAN 1989	
10 AUG 1989 11 DEC 1989 12 SEP 1990 13 JUL 1991 14 MAY 1992 15 DEC 1992 16 JUN 1993 17 NOV 1993 18 MAY 1994 19 MAY 1995 20 SEP 1996 21 JUN 97 22 JAN 98 23 AUG 98 24 JAN 99 25 JUN 99 26 DEC 99 27 MAY 00	08	MAR 1989	
11 DEC 1989 12 SEP 1990 13 JUL 1991 14 MAY 1992 15 DEC 1992 16 JUN 1993 17 NOV 1993 18 MAY 1994 19 MAY 1995 20 SEP 1996 21 JUN 97 22 JAN 98 23 AUG 98 24 JAN 99 25 JUN 99 26 DEC 99 27 MAY 00	09	APR 1989	
12 SEP 1990 13 JUL 1991 14 MAY 1992 15 DEC 1992 16 JUN 1993 17 NOV 1993 18 MAY 1994 19 MAY 1995 20 SEP 1996 21 JUN 97 22 JAN 98 23 AUG 98 24 JAN 99 25 JUN 99 26 DEC 99 27 MAY 00	10	AUG 1989	
13 JUL 1991 14 MAY 1992 15 DEC 1992 16 JUN 1993 17 NOV 1993 18 MAY 1994 19 MAY 1995 20 SEP 1996 21 JUN 97 22 JAN 98 23 AUG 98 24 JAN 99 25 JUN 99 26 DEC 99 27 MAY 00	11	DEC 1989	
14 MAY 1992 15 DEC 1992 16 JUN 1993 17 NOV 1993 18 MAY 1994 19 MAY 1995 20 SEP 1996 21 JUN 97 22 JAN 98 23 AUG 98 24 JAN 99 25 JUN 97 26 DEC 99 27 MAY 00	12	SEP 1990	
15 DEC 1992 16 JUN 1993 17 NOV 1993 18 MAY 1994 19 MAY 1995 20 SEP 1996 21 JUN 97 22 JAN 98 23 AUG 98 24 JAN 99 25 JUN 99 26 DEC 99 27 MAY 00	13	JUL 1991	
16 JUN 1993 17 NOV 1993 18 MAY 1994 19 MAY 1995 20 SEP 1996 21 JUN 97 22 JAN 98 23 AUG 98 24 JAN 99 25 JUN 97 26 DEC 99 27 MAY 00	14	MAY 1992	
17 NOV 1993 18 MAY 1994 19 MAY 1995 20 SEP 1996 21 JUN 97 22 JAN 98 23 AUG 98 24 JAN 99 25 JUN 97 26 DEC 99 27 MAY 00	15	DEC 1992	
18 MAY 1994 19 MAY 1995 20 SEP 1996 21 JUN 97 22 JAN 98 23 AUG 98 24 JAN 99 25 JUN 99 26 DEC 99 27 MAY 00	16	JUN 1993	
19 MAY 1995 20 SEP 1996 21 JUN 97 22 JAN 98 23 AUG 98 24 JAN 99 25 JUN 97 26 DEC 99 27 MAY 00	17	NOV 1993	
20 SEP 1996 21 JUN 97 22 JAN 98 23 AUG 98 24 JAN 99 25 JUN 97 26 DEC 99 27 MAY 00	18	MAY 1994	
21 JUN 97 22 JAN 98 23 AUG 98 24 JAN 99 25 JUN 99 26 DEC 99 27 MAY 00	19	MAY 1995	
22 JAN 98 23 AUG 98 24 JAN 99 25 JUN 99 26 DEC 99 27 MAY 00	20	SEP 1996	
23 AUG 98 24 JAN 99 25 JUN 99 26 DEC 99 27 MAY 00	21	JUN 97	
24 JAN 99 25 JUN 99 26 DEC 99 27 MAY 00	22	JAN 98	
25 JUN 99 26 DEC 99 27 MAY 00	23	AUG 98	
26 DEC 99 27 MAY 00	24	JAN 99	
27 MAY 00	25	JUN 99	
	26	DEC 99	
28 OCT 00	27	MAY 00	
	28	OCT 00	

AI	AIRBUS TRAINING A320		GENERAL INFORMATION		2.00.30	P 2
			LIST (of Normal Revisions	SEQ 001	REV 40
R						
	N°	ISSUE	DATE			
	29	MAR 01				
	30	SEP 01				
	31	APR	02			
	32	SEP	02			
	33	MAR 03				
	34	NOV	03			
	35	JUL	04			

MAR 05

DEC 05

SEP 06 MAY 07

SEP 08

36

37 38

39 40

GENERAL INFORMATION

2.00.35

RECORD OF TEMPORARY REVISIONS

SEQ 001 | REV 22

P 1

N°	TITLE he operator, if needed.	STATUS	LOCATION
To be filled by the	ne operator, if needed.		

318	/319/320/321	FCOM VOL.2	2 (FLIGHT PREPARATION) LIST OF EFFECTIVE TEMPORAF	RY REVISIONS
м	TR NO	- DATE ·		EFFECTIVITY
	689-1A	DEC2008 F	RNP-4 OPERATIONS	ALL

TR Nº 689-1 PAGE 1 OF 5

SUBJECT : RNP-4 OPERATIONS

REASON FOR ISSUE: This temporary revision is issued to provide Operators with the procedures corresponding to RNP-4 operations in oceanic or remote areas.

VALIDITY : All A320 Family Operators.

FILING INSTRUCTIONS

Update the Record of Temporary Revisions, and insert the following pages :

TR N° 689-1, Page 1 of 5, following 2.00.36. TR N° 689-1, Page 2 of 5, facing 2.04.00 Page 2. TR N° 689-1, Page 3 of 5, facing 2.04.51 Page 1. TR N° 689-1, Page 4 of 5, facing 2.04.51 Page 3. TR N° 689-1, Page 5 of 5, facing 2.04.51 Page 4.

This Temporary Revision has been issued after normal revision N° 40 Do not remove it until instructed to do so.

318/319/320/321 FCOM VOL.2 REV040

THIS TABLE GIVES, FOR EACH AIRCRAFT INCLUDED IN THE MANUAL, THE CROSS REFERENCE BETWEEN :

- THE MANUFACTURING SERIAL NUMBER (MSN) WHICH APPEARS IN THE LIST OF EFFECTIVE PAGES

- THE REGISTRATION NUMBER OF THE AIRCRAFT AS KNOWN BY AIRBUS INDUSTRIE.

MSN REGISTRATION

0009 S1.6UPT2H0

2CM

2.00.70 PAGE : CRT001 318/319/320/321 FCOM VOL. 2 FLIGHT PREPARATION HIGHLIGHTS REVO40 V CH SEC ---PAGE-- SEQ- --REV-- ----VALIDATION CRITERIA----------REASONS OF CHANGE-----2 04 00 002 102 REV040 36998=35165+36998 - INCORPORATION OF MOD 36998 2 04 51 006 100 REV040 36998=35165+36998 - INCORPORATION OF MOD 36998 2 04 51 007 100 REV040 36998 - INCORPORATION OF MOD 36998 2 04 51 008 100 REV040 36998 - INCORPORATION OF MOD 36998

318,	/319/320	0/321 FCOM	,		(FLIGHT PREPARATION) IST OF EFFECTIVE PAGES (LEP)	-REV 040
ΜV	CH SEC	PAGE	SEQ-	REV	VALIDATION CRITERIA VALIDATION CRITERIA	EFFECTIVITY
2	00 00	001	001	REV021	CONTENTS	ALL
	00 10 00 10	001 002	001 001	REVO38 REVO40	ORGANIZATION OF THE MANUAL ORGANIZATION OF THE MANUAL	ALL
	00 10 00 10	003 004	001 001	REVO22 REVO22	ORGANIZATION OF THE MANUAL ORGANIZATION OF THE MANUAL	ALL
2	00 10	005	001	REV 021	ORGANIZATION OF THE MANUAL	ALL
	00 20 00 20	001 002	001 001	REVO40 REVO40	LIST OF CODES LIST OF CODES	ALL
	00 20 00 20	003 004	001 001		LIST OF CODES LIST OF CODES	ALL
	00 20 00 20	005 006	001 001	REV040 REV040	LIST OF CODES LIST OF CODES	ALL
	00 20 00 20	007 008	001 001	REV040 REV040	LIST OF CODES LIST OF CODES	ALL
	00 20 00 20	009 010	001 001		LIST OF CODES LIST OF CODES	ALL
	00 20 00 20	011 012	001 001	REV040 REV040	LIST OF CODES LIST OF CODES	ALL
2	00 20	013	001	REV040	LIST OF CODES	ALL
	00 30 00 30	001 002	001 001	REVO28 REVO40	LIST OF NORMAL REVISIONS LIST OF NORMAL REVISIONS	ALL
2	00 35	001	001	REV022	RECORD OF TEMPORARY REVISION	ALL
2	00 36	001	001	REV040	LIST OF EFFECTIVE TR	ALL
2	00 70	001	001	REV040	CROSS REFERENCE TABLE	ALL
2	00 75	001	001	REV040	HIGHLIGHTS	ALL
2	00 80	001	001	REV040	LIST OF EFFECTIVE PAGES	ALL
2	00 85	001	001	REV040	LIST OF MODIFICATIONS	ALL
2	01 00	001	001	REV039		ALL
2	01 10	001	001	REV031		ALL
	01 20 01 20	001 002	001 002	REV021 REV035	STD = M:(20040+20065)	ALL
	01 20 01 20	003 004	100 001	REVO2O REVO2O	MOD:21329	ALL
	01 20 01 20	005 006	001 001	REVO2O REVO2O		ALL

2 C M

318/319/320/321 FCOM	VOL.2	(FLIGHT PREPARATION)	-REV 040
		LIST OF EFFECTIVE PAGES (LEP) -	

M V M V	CH CH	SEC SEC	PAGE PAGE	SEQ- SEQ-	REV REV	VALIDATION CRITERIA	EFFECTIVITY EFFECTIVITY
		30 30				CODE 0011 MOD:20024	ALL
	01 01		003 004	102 001	REV040 REV020	31286	ALL
	01 01		005 006	100 001	REVO2O REVO21	MOD: 20024	ALL
2	01	30	007	205	REV040	20024+31286	ALL
2	01	30	007A	001	REV038		ALL
2	01	30	008	205	REV040	20024+31286	ALL
	01 01		009 010	100 200	REVO40 REVO24	20024 CODE 0024	ALL
2	01	30	010A	001	REV033		ALL
2	01	30	011	100	REV033	M:20024=20024+32115+32622	ALL
2	01	30	011A	001	REV033	STD=32115+32622	ALL
2	01	30	012	100	REV033	20024	ALL
	01 01		013 014	001 001	REV033 REV033	CODE 0029 CODE 0029	ALL
		30 30	015 016	001 001	REV033 REV033	CODE 0029 CODE 0029	ALL
	01 01		017 018	001 001	REV033 REV033	CODE 0029 CODE 0029	ALL
	01 01		019 020	001 100	REV033 REV033	CODE 0029 CODE 0031	ALL
2	01	30	021	100	REV033	CODE 0031	ALL
	01 01		001 002	001 110	REVO28 REVO28	M:20268	ALL
	01 01		003 004	100 110	REVO28 REVO35	MOD:20268 MOD 20268	ALL
	01 01		005 006	110 001	REV035 REV030	MOD 20268	ALL
	02 02		001 002	100 001	REV025 REV035	CODE 0189	ALL
2	02	05	001	001	REV022		ALL
	02 02		001 002	001 100	REV022 REV025	CODE 0189	ALL
	02 02	10 10	003 004		REVO34 REVO25	COD90/2500/2527/27E/B4/A1/A3 CODE 0189	ALL

318/319/320/321 FCOM		(FLIGHT PREPARATION) .IST OF EFFECTIVE PAGES (LEP)	-REV 040
		VALIDATION CRITERIA	
	100 REV025 270 REV034	CODE 0189 COD92/2527/2500/27E/A1/A3/B4	ALL
	270 REV037 280 REV037	C0092/V2500/27/27E/A1/A3/B4 C0DE 0092/CFM 56-5-B4	ALL
	270 REV037 280 REV037	COD92/2500/2527/27E/B4/A1/A3 CODE 0092/CFM 56-5-B4	ALL
	280 REV037 100 REV022		ALL
2 02 14 001 2 02 14 002	090 REV025 100 REV038	CFM 56-5-B4 Code 0192	ALL
	370 REV037 280 REV034		ALL
	270 REV040 280 REV034		ALL
	280 REV034 100 REV033		ALL
	001 REV022 100 REV023	CODE 0189	ALL
	370 REV034 100 REV025		ALL
	100 REV037 270 REV034		ALL
2 02 18 001 2 02 18 002	100 REV025 270 REV034		ALL
2 02 18 003 2 02 18 004	255 REV034 270 REV037		ALL
2 02 18 005 2 02 18 006	255 REV037 255 REV034	CODE 0092/B4 CODE 0092/B4	ALL
2 02 18 007	100 REV022	CODE 0189	ALL
2 02 20 001 2 02 20 002	040 REV025 100 REV038	CFM 56-5-B4 CODE 0192	ALL
	270 REVO34 255 REVO34	C:0092/V2500/27/27E/A1/A3/B4 CODE 0092/B4	ALL
2 02 20 005 2 02 20 006	270 REV036 255 REV037		ALL
2 02 20 007 2 02 20 008	255 REV034 100 REV033	CODE 0092/B4 CODE 0189	ALL
2 02 24 001 2 02 24 002		CODE 0092/56-5-B4 CODE 0092/56-5-B4	ALL

2.00.80 PAGE 03

318/319/320/321 FCOM	VOL.2	(FLIGHT PREPARATION)	-REV 040
		LIST OF EFFECTIVE PAGES (LEP) -	

M V M V														EFFECTIVITY	-
2 2	02 02	25 25	001 002	350 350	REVO38 REVO38	CODE Code	00	90/ 90/	56- 56-	5 - I 5 - I	34 34			ALL	
	02 02		003 004	350 350	REVO38 REVO38	CODE Code	00	90/ 90/	56- 56-	5 - I 5 - I	34 34			ALL	
	02 02	40 40	001 002	360 260	REV037 REV037	CODE Code	00	90 92	(I A (I A	E/(E/(CFM) CFM))		ALL	
	02 02		003 004	300 300	REVO34 REVO34	CODE : CODE :	00	90/ 90/	56- 56-	5 - I 5 - I	34 34			ALL	
	02 02				REVO34 REVO34									ALL	
	02 02	40 40	007 008	300 300	REVO34 REVO34	CODE : CODE :	00	90/ 90/	56- 56-	5 - I 5 - I	34 34			ALL	
	02 02	40 40	009 010	300 001	REV034 REV020	CODE :	00	90/	56-	5 - I	34			ALL	
	02 02		011 012	300 300	REVO34 REVO34	CODE : Code :	00 00	90/ 90/	56- 56-	5 - I 5 - I	34 34			ALL	
		40 40	013 014	300 001	REV034 REV020	CODE :	00	90/	56-	5 - I	34			ALL	
	02 02	50 50	001 002	001 300	REVO32 REVO34	CODE :	00	90/	56-	5 - I	34			ALL	
	02 02		003 004	300 300	REVO34 REVO34	CODE: Code:	00	90/ 90/	56- 56-	5 - 1 5 - 1	34 34			ALL	
_	02 02				REVO34 REVO34	CODE : Code :								ALL	
2	02	50	007	300	REV034	CODE :	00	90/	56-	5 - I	34			ALL	
2	03	00	001	001	REV031									ALL	
	03 03				REVO26 REVO26	CODE	00	81						ALL	
	03 03	10 10	003 004	305 305	REVO34 REVO34	CODE Code	00	90 90	CFM CFM	EI EI	NG: NG:	56-5- 56-5-	B4 B4	ALL	
	03 03				REVO34 REVO32	CODE	00	90	CFM	EI	NG :	56-5-	B4	ALL	
	03 03		001 002		REVO33 REVO34	CODE	00	90	CFM	EI	NG:	56-5-	B4	ALL	
	04 04				REVO39 REVO40	36998	3 = 3!	516	5+3	699	98			ALL	
	04 04				REVO40 REVO37									ALL	
2	04	10	002A	340	REV037	C:90/	'V2!	527	/27	E/:	2500	D/B4/A	1/A3	ALL	

30 JAN 2009

318/319/320/321 FCOM	VOL.2	(FLIGHT PREPARATION)	-REV 040
		LIST OF EFFECTIVE PAGES (LEP) -	

M V M V	СН СН	SEC SEC	PAGE PAGE	SEQ- SEQ-	REV REV	VALIDATION CRITERIA VALIDATION CRITERIA	EFFECTIVITY
2	04	10	002B	100	REV034	CODE 0189	ALL
	04 04		004	348	REV034	CODE:0090/56-5-B4 CODE:0090/56-5-B4	ALL
	04 04		005 006	348 348	REVO38 REVO38	CODE : 0090/56-5-B4 CODE : 0090/56-5-B4	ALL
	04 04	10 10	007 008	348 348	REVO38 REVO38	CODE : 0090/56-5-B4 CODE : 0090/56-5-B4	ALL
	04 04	10 10	009 010	348 001	REVO38 REVO22	CODE:0090/56-5-B4	ALL
	04 04		011 012	001 001	REVO21 REVO38		ALL
	04 04		013	001	REV038	CODE:0090/56-5-B4	ALL
	04					CODE:0090/56-5-B4	ALL
2	04	15	001	001	REV020		ALL
	04 04		001 002		REVO21 REVO20		ALL
	04 04		003 004	001 001	REVO27 REVO36		ALL
2	04	20			REV040	34673	ALL
2	04	20	005A	100	REV040	34673	ALL
2	04	20	006	030	REV027	CODE 0253	ALL
	04 04	20 20	007 008	170 001	REVO28 REVO36	CODE 0048 CFM 56-5-B4	ALL
	04 04					M: 22013=24105=28160 M: 22013=24105=28160	ALL
	04 04		003 004	035 200		CODE 0015 CODE 0092/CFM56-5-B4	ALL
	04 04					CODE 0120/56-5-B4 CODE 0092/CFM 56-5-B4	ALL
	04 04		007 008	140 140	REVO23 REVO26	CODE 0048 CFM 56-5-B4 Code 0048 CFM 56-5-B4	ALL
	04 04		009	170	REV023 REV031	CODE 0048 CFM 56-5-B4	ALL
	04 04				REVO23 REVO31	MOD:20268 CFM 56-5-B4 20268 CFM 56-5-B4	ALL
	04 04		001 002	001 001	REVO20 REVO21		ALL

318/319/320/321 FCOM VOL.2 (FLIGHT PREPARATION) LIST OF EFFECTIVE PAGES (LEP) -

-REV 040

M M	v v	CH Ch	SEC SEC	PAGE PAGE	SEQ- SEQ-	REV REV	VALIDATION CRITERIA	EFFECTIVITY
		04 04		001 002	001 001	REVO40 REVO20		ALL
		04			001	REV021		ALL
		04			001	REV020		AL 1
		04 04			001	REV040		ALL
		04		005 005A	001 001	REV021 REV040		ALL
	-	04			001	REV040		ALL
				008	001			
		04 04		008		REVO40 REVO38		ALL
		04 04		009 010	110 145	REV037 REV040	26249 Code 0001/CFM/PW	ALL
	2	04	40	01 0A	010	REV031	CFM/PW	ALL
	2	04	40	010B	001	REV038		ALL
		04 04			140 065	REVO31 REVO25	CODE 0048 CFM 56-5-B4 CODE 0009 CFM 56-5-B4	ALL
		04 04		013 014	065 065	REV025 REV025	CODE 0009/56-5-B4 CODE 0009/56-5-B4	ALL
		04 04			025 025		B1/B2/B3/B4/B5/B6/B7/B8/B9 B1/B2/B3/B4/B5/B6/B7/B8/B9	ALL
		04 04			025 025	REV040 REV040	B1/B2/B4/B5/B6/B7/B8/B9 B1/B2/B3/B4/B5/B6/B7/B8/B9	ALL
		04 04			103 001	REVO38 REVO38	CODE 0037	ALL
	-	04 04		003 004		REVO38 REVO38	CODE 0038 CODE 0038	ALL
	_	04 04		005 006	001 100		36998=35165+36998	ALL
	_	04 04		007 008	100 100	REVO40 REVO40	36998 36998	ALL
	2	04	60	001	001	REV035	STD=26925=(33865+30397)/CODE	ALL
	2	05	00	001	001	REV021		ALL
		05 05		001 002	120 001	REV024 REV021	M:25800/56-5-B1 T0 B9	ALL
		05 05	10 10		001 001	REVO2O REVO21		ALL

30 JAN 2009

2.00.80 PAGE 06

318/319/320/321 FCOM VOL.2 (FLIGHT PREPARATION) -REV 040 LIST OF EFFECTIVE PAGES (LEP) -

M V M V	СН СН	SEC SEC	PAGE PAGE	SEQ- SEQ-	REV REV	VALIDATION CRITERIA	EFFECTIVITY
2 2	05 05	15 15	001 002	001 020	REVO2O REVO24	CODE 0073/CFM	ALL
2	05		003 004				ALL
		15 15	005 006	180 180	REV 03 1 REV 03 1	CODE 0048/CFM 56-5-B4 Code 0048/CFM 56-5-B4	ALL
	05 05		007 008	180 140	REV031 REV031	CODE 0048 CFM 56-5-B4 CODE 0048 CFM 56-5-B4	ALL
2	05	15	009	140	REV031	CODE 0048 CFM 56-5-B4	ALL
	05 05		001 002	140 170	REV031 REV034	CODE 0048/CFM 56-5-B4 Code:0048 CFM 56-5-B4 T=L	ALL
2	05	20	003	001	REV022		ALL
		30 30	001 002	120 180	REVO24 REVO23	M:25800/56-5-B1 T0 B9 CODE 0048 CFM 56-5-B4	ALL
	05 05		003 004	180 180	REV023 REV023	CODE 0048 CFM 56-5-B4 Code 0048 CFM 56-5-B4	ALL
2 2	05 05	30 30	005 006	180 180	REVO26 REVO26	CODE 0048 CFM 56-5-B4 Code 0048 CFM 56-5-B4	ALL
2 2	05 05	30 30	007 008	180 180	REVO26 REVO23	CODE 0048 CFM 56-5-B4 Code 0048 CFM 56-5-B4	ALL
		30 30	009 010	180 180	REV023 REV023	CODE 0048 CFM 56-5-B4 Code 0048 CFM 56-5-B4	ALL
		30 30	011 012	180 180	REV023 REV023	CODE 0048 CFM 56-5-B4 Code 0048 CFM 56-5-B4	ALL
	05 05	30 30	013 014	180 180	REV023 REV023	CODE 0048 CFM 56-5-B4 Code 0048 CFM 56-5-B4	ALL
2 2	05 05	30 30	015 016	180 180	REV023 REV023	CODE 0048 CFM 56-5-B4 CODE 0048 CFM 56-5-B4	ALL
	05 05	30 30	017 018	180 180	REV023 REV023	CODE 0048 CFM 56-5-B4 CODE 0048 CFM 56-5-B4	ALL
	05 05	30 30	019 020	180 180	REVO23 REVO26	CODE 0048 CFM 56-5-B4 CODE 0048 CFM 56-5-B4	ALL
	05 05	30 30	021 022	180 180	REVO26 REVO30	CODE 0048 CFM 56-5-B4 CODE 0048 CFM 56-5-B4	ALL
2 2	05 05	30 30	023 024	180 180	REV023 REV023	CODE 0048/56-5-B4 CODE 0048 CFM 56-5-B4	ALL
2 2	05 05	40 40	001 002	130 180	REVO24 REVO23	M:25800/CFM 56-5-B4 CODE 0048/56-5-B4	ALL

318/	319	9/320)/321 FCOM	1	/OL.2 Li	(FLIGHT PREPARATION) IST OF EFFECTIVE PAGES (LEP)	-REV 040 -
M V M V	CH CH	SEC SEC	PAGE PAGE	SEQ- SEQ-	REV REV	VALIDATION CRITERIA VALIDATION CRITERIA	EFFECTIVITY
2 2	05 05	40 40	003 004	180 180	REVO23 REVO23	CODE 0048 CFM 56-5-B4 Code 0048 CFM 56-5-B4	ALL
2 2	05 05	40 40	005 006	180 180	REV023 REV023	CODE 0048 CFM 56-5-B4 Code 0048 CFM 56-5-B4	ALL
						CODE 0048 CFM 56-5-B4 Code 0048 CFM 56-5-B4	ALL
		40 40				CODE 0048 CFM 56-5-B4 CODE 0048 CFM 56-5-B4	ALL
		40 40	011 012	180 180	REV023 REV023	CODE 0048 CFM 56-5-B4 CODE 0048 CFM 56-5-B4	ALL
		50 50	001 002	130 180	REVO24 REVO23	M:25800/56-5-B4 Code 0048 CFM 56-5-B4	ALL
2	05	50				CODE 0048 CFM 56-5-B4	ALL
		60 60	001 002		REVO21 REVO23		ALL
	05 05		003 004		REV022 REV021		ALL
		70 70	001 002	030 030	REVO21 REVO22	CFM 56-5-B4 CFM 56-5-B4	ALL
		70 70	003 004	030 030	REV021 REV021	CFM 56-5-B4 CFM 56-5-B4	ALL
	05 05		005	030	REV021		ALL
2	05	70	007	030	REV021	CFM 56-5-84 CFM 56-5-84	ALL

318/319/320/321 FCOM Volume : 2 Flight Preparation List of Mod/MP/SB Affecting the Manual

REVISION : 040

M V REV T	MOD MP SB	TITLE	VALIDITY
. 031	20024	FUEL- INSTAL All	LL A CENTRE TANK SYSTEM-
	20167		REINFORCE STRUCTURE TO 72T-MLW 63T-MZFW 59T DESIGN
. 036	20268		TIP FENCES-INTRODUCE WING Ding Fences-
. 036	21329	DOORS-CARGO INDICATION ALL	COMPT DOORS-MODIFY LOCKING
	23124		DNING - PRESSURIZATION Improve controller to enable Ernal mode
. 036	23779		VEMENTS INTRODUCED FROM [2] To A/C 521 (ST2)
. 031	24251		- A320 - CFM 56 - Rated Engines CFM 56-B4
	24373		LEVEL SENSING - INTRODUCE DW FUEL PRESSURE WARNING
. 036	24946		R - MLG - MESSIER - Brakes P/N C202253
. 036	25800	POWER PLANT- CFM56-5B/P All	-GENERAL-INTRODUCE
. 036	26018		RECORDING SYSTEMS-DISPLAY Computer (DMC)-Introdcue D
		2CM	2 00 85

30 JAN 2009

2CM

318/319/320/321 FCOM Volume : 2 Flight Preparation List of Mod/MP/SB Affecting the Manual

REVISION : 040

M V T	REV	MOD MP SB	TITLE VALIDITY
•	036	26249	AIR CONDITIONING-FLOW CONTROL AND INDICATING INTRODUCE MODIFIED AIR Conditioning flow control All
•	036	26645	AUTO-FLIGHT-FAC INTRODUCE FAC STD BAM 0513 All
•	036	26910	FLIGHT CONTROL -ELAC SYSTEM- Introduce E.L.A.C. With Enhanced Relays All
•	040	26925	LANDING GEAR-ALTERNATE BRAKING- INTRODUCE MODIFIED ALTERNATE BRAKING SYSTEM ALL
•	037	26965	LANDING GEAR-WHEELS AND BRAKES- INTRODUCE BSCU COMMON STD All
•	036	27276	FLIGHT CONTROLS-ELAC SYSTEM-INTRODUCE ELAC SOFTWARE "L&O" All
•	036	27620	NAVIGATION-STANDBY DATA : ALTITUDE AND HEADING - INSTALL INTEGRATED STANDBY INSTRUMENT SYSTEM (ISIS) ALL
•	036	27773	LANDING GEAR-NORMAL BRAKING- INTRODUCE STD 8 BSCU (TWIN VERSION) All
•	037	28009	AIR CONDITIONING-PRESSURE CONTROL AND MONITORING-INTRODUCE PRESSURE CONTROLLER P/N 9022-15702-10 ALL
•	036	28160	ELEC PWR-AC EMERGENCY GENERATION- ACTIVATE A319/A321 ELECTRICAL EMERGENCY CONFIGURATION ON A320 A/C ALL

30 JAN 2009

2CM

318/319/320/321 FCOM Volume : 2 Flight preparation List of Mod/MP/SB AFFECTING THE MANUAL

REVISION : 040

м

M V T	REV	MOD MP SB	TITLE VALIDITY
	036	30961	FUEL - MAIN FUEL PUMP SYSTEM - ADAPT PUMP CONTROL LATCH FOR FLIGHT DECK REFUEL CAPABILITY All
•		31106	LANDING GEAR - NORMAL BRAKING - Introduce STD 9 bSCU (TWIN VERSION) All
		31286	COMMUNICATIONS-HF SYSTEM-ACTIVATE DATA LINK FUNCTION FOR HFDR1 All
•	036	31395	FLIGHT CONTROLS - ELAC SYSTEM - Introduce Elac STD L81 All
•	039	31426	NAVIGATIONS-EGPWS-ACTIVATE GEOMETRIC Altitude function in the egpws All
•		31896	AUTOFLIGHT-FMGC-INSTALL FMGC CFM C13042AA01 (EQUIPPED WITH FMS2) Honeywell All
•		32619	ENGINE FUEL AND CONTROL - FADEC SYSTEM INTRODUCE NEW FADEC SOFTWARE "5BK" ON SAC CFM56-5B ENGINES All
•	040	33239	ENGINE FUEL AND CONTROL - FADEC SYSTEM - INSTALL "5BL" STANDARD ECU SOFTWARE FOR CFM56-5B ENGINES (A318 CAPABLE) All
	039	33374	INDICATING RECORDING SYSTEM - FLIGHT Warning Computer (FWC) - Install FWC Standard H2F2 All
•	040	34673	AIR CONDITIONING - PRESSURE CONTROL AND Monitoring - Install RPCU and Wiring Provisions for RPWS All

30 JAN 2009

2CM

	VOLUM		DM IGHT PREPARATION AFFECTING THE MANUAL	REVISION : 040
M V T	REV	MOD MP SB	TITLE VALIDITY	I.
N	• • • •	36998	NAVIGATION - GENERAL - INST/ The Cockpit activating log] Dev Scale Display All	-

30 JAN 2009

2CM

	AIRBUS TRAINING		LOADING	2.01.00	P 1
			CONTENTS	SEQ 001	REV 39
	01.00	CONTENTS			
	01.10	GENERAL			
R	01.20	 DESCRIPTION RESTRAINT 3 CARGO LOAI CARGO CAPA CARGO DOO Normal ope Auxiliary o 	ING SYSTEM DING SYSTEM ACITY R OPERATION eration F SERVICE PANELS		
	01.30	- REFUELLING - GROUND FU - DEFUELING - OVERWING (- REFUELING \ - APU START/	Formation El Transfer Gravity Refueling With one Engine Running Shutdown During Refueling/Defueli NUAL MAGNETIC INDICATORS		
R R	01.40		BALANCE RIM SHEET		

AIRBUS TRAINING A320	LOADING	2.01.10	P 1
	GENERAL	SEQ 001	REV 31

DEFINITIONS

R – MANUFACTURER'S EMPTY WEIGHT (MEW)

The weight of the structure, power plant, furnishings, systems and other items of equipment that are considered an integral part of the aircraft. It is essentially a "dry" weight, including only those fluids contained in closed systems (e.g. hydraulic fluid).

R – **<u>OPERATIONAL EMPTY WEIGHT OEW</u>**)

The manufacturer's weight empty plus the operator's items i.e. the flight and cabin crew and their baggage, unusable fuel, engine oil, emergency equipment, toilet chemicals and fluids, galley structure, catering equipment, seats, documents etc.

- DRY OPERATING WEIGHT (DOW)

The total weight of an aircraft ready for a specific type of operation excluding all usable fuel and traffic load.

Operational Empty Weight plus items specific to the type of flight i.e. catering, newspapers, pantry equipment etc.

- TAKEOFF FUEL

The weight of the fuel onboard at takeoff.

- OPERATING WEIGHT

R The weight obtained by addition of the operational empty weight and the takeoff fuel.

- TOTAL TRAFFIC LOAD

The weight of the payload including cargo loads, passengers and passengers bags.

- ZERO FUEL WEIGHT (ZFW)

R The weight obtained by addition of the total traffic load and the dry operating weight.

- TAKEOFF WEIGHT (TOW)

The weight at takeoff. It is equal to the addition of the zero fuel weight and takeoff fuel.

- TRIP FUEL

The weight of the fuel necessary to cover the normal leg without reserves.

- LANDING WEIGHT

The weight at landing. It is equal to takeoff weight minus trip fuel.

AIRBUS TRAINING
(C) A320
SIMULATOR
FLIGHT CREW OPERATING MANUAL

GENERAL

The aircraft has two lower deck cargo compartments :

- Forward cargo compartment, compartment 1.
- Aft cargo compartment, subdivided into compartments 4 and 5.

The main access doors to forward and aft compartments are hydraulically operated.

A bulk cargo door \lhd gives additional access to the aft cargo compartment. It is manually operated.

DESCRIPTION

Each compartment is divided into sections, and is designed to be category D (for A320 and A319) or category C (A321, A319 \triangleleft and A320 \triangleleft) as defined by FAR.

A placard in each compartment indicates the maximum authorized gross weight. The compartments have separate lighting.

RESTRAINT SYSTEM

Divider nets subdivide the compartments to allow them to be partially loaded and to retain the bulk.

Door nets which protect the doors from shifting cargo, must be used whenever the compartment contain cargo.

CARGO LOADING SYSTEM ⊲

A semi-automatic cargo loading system, which may be installed in forward and aft compartments, loads pallets and containers.

AIRBUS TRAINING A320	LOADING	2.01.20	P 2
	CARGO LOADING	SEQ 002	REV 35

CARGO CAPACITY

If the aircraft is in full bulk configuration, or if the Cargo Loading System (CLS) is installed, R the maximum load for each compartment is as follows :

- Forward

Compartment 1 : 3 402 kg (7 500 lb)

- <u>Aft</u>

Compartment 4 : 4 536 kg (10 000 lb)

– <u>Bulk</u>

Compartment 5 : 1 497 kg (3 300 lb)

If the CLS is installed, the following table lists the loading possibilities (including the Maximum Gross Weight per container/pallet).

ULD	ΑΤΑ	NAS 3610	ΙΑΤΑ	Allowable MGW		Maxi num	
				kg	lb	fwd	aft
Half size	LD3-46	2K2	G	1134	2500	3	4
Full size	LD3-46W	2K2	н	1134	2500	3	4
60.4×61.5 in		2K3	к	1134	2500	3	4
60.4×61.5 in		2K3	X	1134	2500	3	4

AIRELS TRAINING A320	LOADING	2.01.20	P 3
SIMULATOR FLIGHT CREW OPERATING MANUAL	CARGO LOADING	SEQ 100	REV 20

CARGO DOOR OPERATION

NORMAL OPERATION

OPENING

On door

- ACCESS DOOR OPERATING HANDLE RELEASE Push handle flap inward.
- DOOR UNLOCK Move door operating handle downward (105°) from LOCKED to UNLOCK position.

On door service panel

- SERVICE PANEL ACCESS DOOR OPEN
- When the door is fully open (green light on the service panel is on) :
 - LEVER OF MANUAL SELECTOR VALVE RELEASE When released, the lever returns to the neutral position and shuts down the electric pump.

CLOSING

On door service panel

- LEVER OF MANUAL SELECTOR VALVE HOLD ON CLOSE At first the lever locks in an intermediate position, maintaining a pre-set pressurization to prevent the door from dropping open. The operator can then move the lever to CLOSE and the door closes. When it is fully closed, the lever returns to the neutral position and shuts down the electric pump. Ensure that green indicator light goes off.

On door

- DOOR LOCK Immediately push the door operating handle upwards to the locked position. When the door is locked, the cargo doors view ports appear green, the CARGO door indication on ECAM extinguishes, and the handle flap mechanism locks the operating handle.

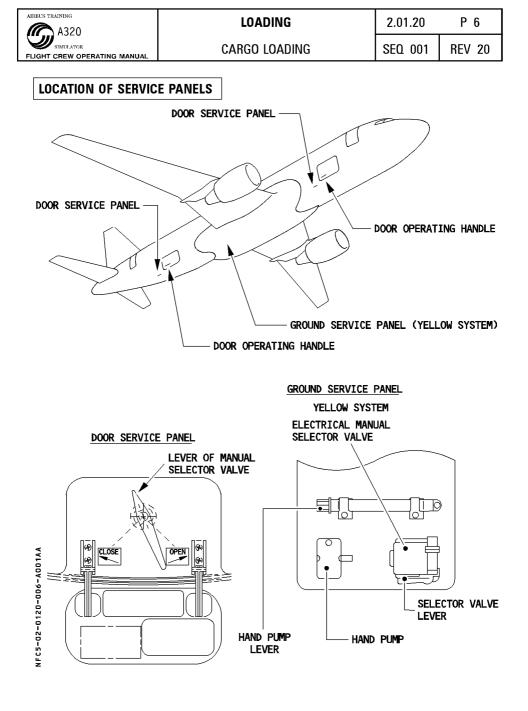
AIRBUS TRAINING A320	LOADING	2.01.20	P 4
FLIGHT CREW OPERATING MANUAL	CARGO LOADING	SEQ 001	REV 20

On door service panel

- ACCESS DOOR		SE
---------------	--	----

AUXILIARY OPERATION

In case of an electrical failure or if the electric pump fails, the operator can open or close the doors by working the hand pump.

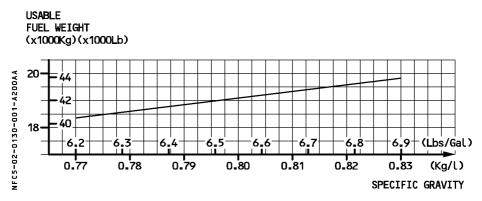

HAND PUMP OPENING

On door

- DOOR UNLOCK Unlock the operating handle as if for normal operation.
On ground service panel
- SERVICE PANEL ACCESS DOOR OPEN
- LEVER OF ELECTRICAL MANUAL SELECTOR VALVE
On door service panel
- SERVICE PANEL ACCESS DOOR OPEN
- LEVER OF MANUAL SELECTOR VALVE
On ground service panel
On ground service panel HAND PUMP The door opens.
– HAND PUMP OPERATE
– HAND PUMP
 HAND PUMP
 HAND PUMP

RBUS TRAINING		0.01.00	
A 320	LOADING	2.01.20	P 5
SIMULATOR	CARGO LOADING	SEQ 001	REV 20
HAND PUMP CLOSING			
On ground service pa	nel		
- LEVER OF ELECTR	CAL MANUAL SELECTOR VALVE		CLOSE
On door service pane	1		
— LEVER OF MANUA	L SELECTOR VALVE	HOLD) ON CLOSE
On ground service pa	nel		
 HAND PUMP The door closes. 			. OPERATE
On door service pane	<u>I</u>		
 LEVER OF MANUA Release when door 	L SELECTOR VALVE		. RELEASE
On ground service pa	nel		
- LEVER OF ELECTR	CAL MANUAL SELECTOR VALVE		OPEN
<u>On door</u>			
- DOOR	handle as for normal operation.		LOCK
On door service pane	l and ground service panel		
- ACCESS DOORS			CLOSE

ſ

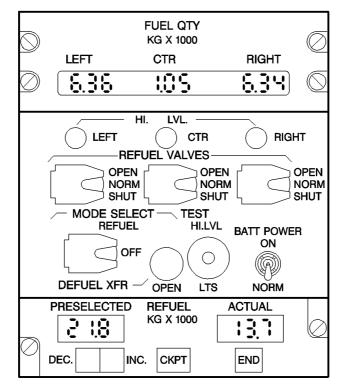

AIRBUS TRAINING A320	LOADING	2.01.30	P 1
	FUEL	SEQ 200	REV 38

GENERAL INFORMATION

USABLE FUEL VOLUME

	WING TANKS		CENTER	
	OUTER CELL	INNER CELL	TANK	TOTAL
LITERS	1760	13849	8250	23859
US GALLONS	464	3659	2180	6303

USABLE FUEL WEIGHT


REFUELING

R

- During automatic refueling, fuel goes into the center tank and outer cell of wing tanks simultaneously. When the outer cell of wing tank is full, fuel overflows into the inner cell. During manual refueling, fill the wing tanks first, then the center tank.
 - With the tanks filled to the maximum capacity, there is enough space in each tank to allow for a 2 % thermal expansion of the fuel without its spilling through the vent system.
- R Electrical transients (caused by switching among the APU, the external and the engine
- R electrical supply) during automatic refueling may stop the process. If the automatic
- R refueling process is stopped, it is necessary to re-enter the Preselected Fuel Quantity.

AIRBUS TRAINING A320	LOADING	2.01.30	P 2
	FUEL	SEQ 100	REV 20

REFUELING CONTROL PANEL

NFC5-02-0130-002-A100AA

AIRBUS TRAINING A320	LOADING	2.01.30	Р3
	FUEL	SEQ 102	REV 40

REFUELING

PREPARATION

- ACCESS PLATFORM - SAFETY PRECAUTIONS APPLY R During refueling operations, ensure that : - No HF transmission (including HF transmission via the HF DATA LINK pb) is R performed R R - The aircraft is properly bonded to the tanker - The tanker and the aircraft are properly grounded. If suitable ground is not available, R the aircraft can be bonded to the tanker only. Always connect the ground cable to the R parking ground point (or to the tanker) before connecting it to the aircraft. In the R cockpit, check that the PARK BRK is ON and that the ACCU PRESS has sufficient pressure. Do not refuel, if a fire or engine overheat warning is displayed. During refueling, do not operate the external lighting. Note : For APU start/shutdown during refueling, refer to FCOM 2.01.30 p 10a. **On refueling control panel :** – TEST LTS Lights on the panel come on. FUEL QTY and the PRESELECTED and ACTUAL displays show 8's HI LVL lights change state if the high level sensors and their circuits are serviceable. **AUTOMATIC REFUELING** - REFUEL VALVES CHECK NORM and GUARDED

AIRBUS TRAINING A320	LOADING	2.01.30	P 4
	FUEL	SEQ 001	REV 20
– MODE SELECT REFUEL			
 START REFUELING When the refueling is finished the END light comes on. 			
	Y must be within 100 kg (220 lb) of the pr		
– MODE SELECT .		OFF an	d GUARDED
MANUAL REFUELING			
- REFUEL VALVES			SHUT
- MODE SELECT .			REFUEL
— REFUEL VALVES (1	anks to be filled)		OPEN
— START REFUELING	ì		
	s of the tanks reach the required level		. MONITOR
— Corresponding	REFUEL VALVES		SHUT
– MODE SELECT		OFF an	d GUARDED
- REFUEL VALVES	S	. NORM an	d GUARDED

AIRBUS TRAINING A320	LOADING	2.01.30	Р 5
	FUEL	SEQ 100	REV 20

GROUND FUEL TRANSFER

On cockpit overhead FUEL panel

– PUMPS (of the tanks not to be defueled)OFF
– MODE SEL MAN
 PUMPS (of the tanks to be defueled) ON if left wing and/or center tanks is (are) to be defueled :
- X FEED
On refueling control panel :
– REFUEL VALVES (of tanks not to be filled)
 REFUEL VALVES (of tanks to be filled)
 MODE SELECT
 FUEL QTY MONITOR When the tank contents reach the required level :
— Corresponding REFUEL VALVES SHUT
- MODE SELECT OFF and GUARDED OPEN light goes out.
- REFUEL VALVES
 Set cockpit FUEL panel to normal configuration.

AIRBUS TRAINING A320	LOADING	2.01.30	P 6
	FUEL	SEQ 001	REV 21

INTENTIONALLY LEFT BLANK

AIRBUS TRAINING A320	LOADING	2.01.30	P 7
	FUEL	SEQ 205	REV 40

DEFUELING

<u>Note</u> : Defueling by suction is not possible.

- ACCESS PLATFORM	IN POSITION
 R During defueling operating R - No HF transmission R performed R - The aircraft is properative R - The tanker and the arrow the aircraft can be being R parking ground point cockpit, check that pressure. Do not define 	S APPLY ions, ensure that : in (including HF transmission via the HF DATA LINK pb) is rly bonded to the tanker ircraft are properly grounded. If suitable ground is not available, onded to the tanker only. Always connect the ground cable to the t (or to the tanker) before connecting it to the aircraft. In the the PARK BRK is ON and that the ACCU PRESS has sufficient fuel, if a fire or engine overheat warning is displayed. During erate the external lighting.
<u>Note</u> : For APU star	t/shutdown during defueling, refer to FCOM 2.01.30 p 10a.
- MAX DEFUELING PRE	SSURE 11 PSI (0.75 bar)
On cockpit overhead FU	EL panel :
– PUMPS	••••••••••••••••••••••••••••••••••••••
On refueling control pan	<u>el :</u>
- REFUEL VALVES .	NORM
– MODE SELECT (OP	EN light comes on) DEFUEL/XFR
On cockpit overhead FU	EL panel :
– MODE SEL	MAN
— PUMPS (of the tan	k(s) to be defueled)ON
— X FEED (OPEN ligh	t comes on) ON
	nts reach the required level
— Corresponding PUI	/IPS OFF

AIRBUS TRAINING A320	LOADING	2.01.30	P 7a
FLIGHT CREW OPERATING MANUAL	FUEL	SEQ 001	REV 38
On refueling contro	l nanel ·		

<u>On refueling control panel :</u>

 MODE SELECT (OPEN light goes out) 	OFF and GUARDED
– REFUEL VALVES	NORM and GUARDED

- Set cockpit FUEL panel to normal configuration.

AIRBUS TRAINING A320	LOADING	2.01.30	P 8
	FUEL	SEQ 205	REV 40

OVERWING GRAVITY REFUELING

Overwing gravity refueling is done at the refuel point in the top of each wing. Fuel is delivered directly into the outer cell from which the inner cell is filled by opening the intercell transfer valves. Fill center tank by transfer from the right wing tank (open the X FEED valve in case of transfer from the left wing tank).

- SAFETY PRECAUTIONS APPLY Disembark all passengers.
- R During refueling operations, ensure that :
- R No HF transmission (including HF transmission via the HF DATA LINK pb) is performed
- R The aircraft is properly bonded to the tanker
- R The tanker and the aircraft are properly grounded. If suitable ground is not available,
- R the aircraft can be bonded to the tanker only. Always connect the ground cable to the parking ground point (or to the tanker) before connecting it to the aircraft. Refer to Aircraft Maintenance Manual (AMM) 12–11–28 PB 301 for more detailed safety procedures.

<u>Note</u> : For APU start/shutdown during refueling, refer to FCOM 2.01.30 p 10a.

- TRANSFER VALVES (on ECAM FUEL page) CHECK POSITION
- If transfer valves closed :
 - MODE SELECT (on the refuel control panel) Check OFF
 - FUEL/XFR VALVE 1/WING/L C/B (A10 on 49VU) and FUEL/XFR VALVE 2/WING/L
 C/B (M22 on 121VU) PULL for a minimum of 5 sec then PUSH
 The refuel control panel door must be closed when the C/B's are being pulled.
 - FUEL/XFR VALVE 1/WING/R C/B (A11 on 49VU) and FUEL/XFR VALVE 2/WING/R C/B (M23 on 121VU) PULL for a minimum of 5 sec then PUSH Intercell transfer valves will stay open until the next refuel selection.
- FUEL/XFR VALVE 1/WING/L and R C/B's (A10 and A11 on 49VU), and FUEL/XFR VALVE 2/WING/L and R C/B's (M22 and M23 on 121 VU) PULL The refuel control panel door must be closed when the C/B's are being pulled. Then it could be opened for subsequent procedures.

AIRBUS TRAINING	LOADING	2.01.30	P 9						
	FUEL	SEQ 100	REV 40						
RH WING REFUELING PROCEDURE									
*— OVERWING REFUEL CAP REMOVE									
 *— REFUELING									
 GROUND FUEL TRANSFER PROCEDURE APPLY When the wing tank reaches the required level : 									
*- REFUELING .			STOP						
*- OVERWING R	EFUEL CAP		INSTALL						
LH WING REFUELING	PROCEDURE								
Perform the steps for	RH wing refueling procedure marked * the	en :							
	1/WING/L and R C/B's (A10 and A11 o and R C/B's (M22 and M23 on 121VU)								
– MODE SELECT .		REFU	EL then OFF						

<u>Note</u>: The overwing refuel point is not at the highest point of the wing and therefore the wing tanks cannot be filled to full.

Check on FUEL page that the intercell transfer valves close.

AIRBUS TRAINING A320	LOADING	2.01.30	P 10
	FUEL	SEQ 200	REV 24

REFUELING WITH ONE ENGINE RUNNING

- Refuel with one engine running only at airports where no external ground pneumatic power is available and only when APU is unserviceable.
- Only the RH fuel couplings can be used.
- Overwing gravity filling is not permitted.
- Disembark all passengers.
- Obtain airport authorization.
 The Airport Fire Department should standby <u>at the aircraft</u> during the entire refueling procedure.
- Point the aircraft into the wind at a location where the slope is negligible. Set the parking brake and check its pressure.
- Run engine n° 1 at ground idle with its generator connected.
- Do not start engine n° 2, shut down engine n° 1 or attempt to start the APU before all fueling operations have been completed.
- Position the fuel truck under the extremity of the right wing. Its pressure should not exceed 30 psi.
- Follow manual refueling procedure.

OPERATION MONITORING

During the entire refueling procedure :

- Monitor the fuel truck shut off valve.
- Be sure that the fueling company is keeping permanent control of the emergency fuel shut off device.
- Have a flight crew member in the cockpit monitoring all systems and the running engine.
- Have a qualified ground crew member at the fueling station to operate the refuel valve switches.
- Monitor the refueling closely and be prepared to close the refuel values in order not to exceed the following fuel quantities :

DENSITY (kg/l)	0.77	0.78	0.79	0.8	0.81	0.82	0.83
L(R) WING (kg)	5710	5780	5860	5930	6005	6080	6160
CENTER (kg)	6030	6110	6190	6270	6350	6430	6500

AIRBUS TRAINING A320	LOADING	2.01.30	P 10a
	FUEL	SEQ 001	REV 33

After second engine start :

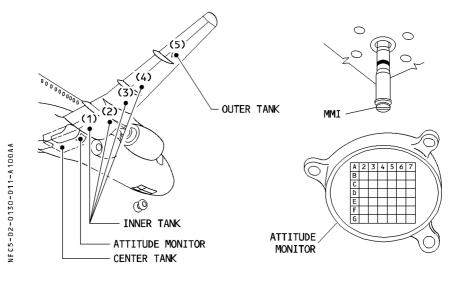
• Reset the 3DMCs in order to reinitialize the fuel used values :

— DMC 1 SPLY C/B (E11 on 49VU) PULL
— DMC 2 SPLY C/B (Q8 on 121 VU) PULL
– DMC 3 SPLY C/B (Q9 on 121 VU) PULL
 DMC 3 SPLY STBY (E10 on 49 VU) PULL After 5 seconds :
— All C/B's PUSH
Note : The T.O. MEMO does not appear automatically since one engine is kent

R APU START/SHUTDOWN DURING REFUELING/DEFUELING

R APU starts or shutdowns are permitted during refuel/defuel procedures. If it is necessary
 R to operate the APU, the limits that follow apply :

- R a) An APU start is not permitted during a refuel/defuel procedure if the APU has failed to start or an automatic shutdown has occured
- R b) A normal APU shutdown must be completed if a fuel spill has occured during the refuel defuel procedure.


<u>Note</u> : The T.U MEMU does not appear automatically since one engine is kept running.

AIRBUS TRAINING A320	LOADING	2.01.30	P 11
	FUEL	SEQ 100	REV 33

USE OF MANUAL MAGNETIC INDICATORS (MMI)

Indicators are disposed as follows :

- · five in each wing tank, four in inner tank and one in outer tank
- · one in the center tank

- ACCESS PLATFORM IN POSITION

AIRBUS TRAINING A320	LOADING	2.01.30	P 11a
	FUEL	SEQ 001	REV 33

TO DETERMINE FUEL QUANTITY IN THE OUTER TANK

- MMI number 5 UNLOCK and WITHDRAW The crewmember must withdraw the MMI slowly until he feels the magnetic attraction between the rod and float magnets.
 Do not use force when withdrawing the MMI as this will disengage the float magnet from the rod magnet and bring the rod down onto the mechanical stop.
- ROD GRADUATION (which aligns with bottom wing surface) READ
- MMI IN PLACE and LOCKED
- Use the table for the applicable aircraft wing side, aircraft attitude (grid square letter and number), and the MMI stick number 5, to find the volume of fuel in the outer tank (See the following pages).
- Multiply the result by the specific gravity to find the fuel weight.

AIRBUS TRAINING A320	LOADING	2.01.30	P 12
	FUEL	SEQ 100	REV 33

TO DETERMINE FUEL QUANTITY IN THE INNER TANK

- MMI (from number 4 to number 1) UNLOCK and WITHDRAW The crewmember must withdraw the MMI slowly until he feels the magnetic attraction between the rod and float magnets.
 Do not use force when withdrawing the MMI as this will disengage the float magnet from the rod magnet and bring the rod down onto the mechanical stop.
- ROD GRADUATION (which aligns with bottom wing surface) READ
- MMI IN PLACE and LOCKED MMIs shall be withdrawn from number 4 to number 1 until one MMI measures fuel.
- Use the table for the applicable aircraft wing side, aircraft attitude (grid square letter and number), and the applicable MMI stick number to find the volume of fuel in the inner tank (See the following pages).
- Multiply the result by the specific gravity to find the fuel weight.

TO DETERMINE FUEL QUANTITY IN THE CENTER TANK

- CENTER TANK MMI UNLOCK and WITHDRAW The crewmember must withdraw the MMI slowly until he feels the magnetic attraction between the rod and float magnets.
 Do not use force when withdrawing the MMI as this will disengage the float magnet from the rod magnet and bring the rod down onto the mechanical stop.
- ROD GRADUATION (which aligns with bottom wing surface) READ
- MMI IN PLACE and LOCKED
- Use the table for the center tank, and for the applicable aircraft attitude (grid square letter and number) to find the volume of fuel in the center tank (See the following pages).
- Multiply the result by the specific gravity to find the fuel weight.

LOADING FUEL

2.01.30

SEQ 001

P 13 REV 33

WING TANKS (LITERS)

м	R E		ATTIT		LITERS 10NITO	R REA	DING		R E		ATTIT		LITERS 10NITO	R REA	DING	
M	M A M D	A*	LEFT	WING		G	RIGHT	WING	M A M D	Α	RIGHT	WING		G	LEFT	WING
N°		1	2	3	4	5	6	7		1	2	3	4	5	6	7**
	N G								N G							
	2	50	50	50	50	50	50	50	2	50	50	50	50	50	50	50
	4	100	100	100	100	100	100	100	4	50	50	50	50	50	50	50
	6	100	100	100	100	100	100	100	6	100	100	100	100	100	100	100
	8	150	150	150	150	150	150	150	8	150	150	150	150	150	150	150
	10	200	200	200	200	200	200	200	10	200	200	200	200	200	200	150
	12	250	250	250	250	250	250	250	12	250	250	250	250	250	250	200
	14	300	300	300	300	300	300	300	14	300	300	300	300	300	300	250
	16	350	350	350	350	350	350	350	16	350	350	350	350	350	350	300
	18	450	450	450	450	450	400	400	18	400	400	400	400	400	400	350
	20	500	500	500	500	500	500	500	20	450	450	450	450	450	450	400
	22	550	550	550	550	550	550	550	22	500	500	500	500	500	500	450
	24	650	650	650	650	650	650	600	24	550	550	550	550	550	550	550
	26	750	750	750	750	750	700	700	26	650	650	650	650	650	650	600
	28	800	800	800	800	800	800	800	28	700	700	700	700	700	700	700
	30	900	900	900	900	900	900	900	30	800	800	800	800	800	800	750
	32	1050	1050	1050	1050	1050	1000	1000	32	900	900	900	900	850	850	850
1	34	1150	1150	1150	1150	1150	1150	1100	34	950	950	950	950	950	950	950
	36	1250	1250	1250	1250	1250	1250	1250	36	1050	1050	1050	1050	1050	1050	1050
	38	1350	1350	1350	1350	1350	1350	1350	38	1150	1150	1150	1150	1150	1150	1150
	40	1500	1500	1500	1500	1500	1500	1500	40	1250	1250	1250	1250	1250	1250	1250
	42	1600	1600	1600	1600	1600	1600	1600	42	1350	1350	1350	1350	1350	1350	1350
	44	1750	1750	1750	1750	1750	1750	1750	44	1450	1450	1450	1450	1450	1450	1450
	46	1900	1900	1900	1900	1900	1900	1900	46	1550	1550	1550	1550	1550	1550	1550
	48	2000	2000	2000	2000	2000	2000	2050	48	1700	1700	1700	1700	1700	1700	1700
	50	2200	2200	2200	2200	2200	2200	2200	50	1800	1800	1800	1800	1800	1800	1800
	52	2350	2350	2350	2350	2350	2350	2400	52	1950	1950	1950	1950	1950	1950	1950
	54	2500	2500	2500	2500	2500	2550	2550	54	2000	2000	2050	2050	2050	2050	2050
	56	2650	2650	2700	2700	2700	2650	2700	56	2200	2200	2200	2200	2200	2200	2200
	58	2800	2800	2800	2800	2850	2850	2850	58	2300	2300	2300	2300	2300	2350	2350
	60	2950	2950	2950	3000	3000	3050	3050	60	2450	2500	2500	2500	2500	2500	2500
	62	3100	3100	3150	3150	3150	3200	3250	62	2600	2600	2650	2650	2650	2650	2650
	63	3150	3150	3200	3200	3250	3300	3350	63	2650	2650	2700	2700	2700	2700	2700
	MAX	3450	3450	3450	3500	3500	3600	3600	MAX	2950	2950	2950	2950	2950	3000	3000

* GRID SQUARE LETTER

** GRID SQUARE NUMBER

AIRBUS TRAINING

M.

A320

LOADING FUEL

2.01.30 P 14

SEQ 001 | REV 33

FLIGHT CREW OPERATING MANUAL

м	RE				liters Ide re				RE			I ATTITU	liters De re	ADING		
M	M A M D	А	LEFT	WING		G	RIGHT	WING	M A M D	Α	RIGHT	WING		G	LEFT	WING
N°		1	2	3	4	5	6	7		1	2	3	4	5	6	7
	N G								N G							
	2	2300	2250	2200	2200	2200	2200	2200	2	2850	2850	2850	2850	2850	2850	2800
	4	2500	2450	2400	2400	2350	2350	2350	4	3050	3050	3050	3050	3050	3000	3000
	6	2650	2600	2600	2600	2550	2500	2500	6	3200	3200	3200	3200	3200	3200	3150
	8	2750	2750	2750	2700	2700	2650	2650	8	3300	3300	3300	3300	3300	3300	3250
	10	2900	2900	2900	2900	2850	2850	2850	10	3500	3500	3500	3500	3450	3450	3400
	12	3100	3100	3100	3100	3100	3050	3000	12	3650	3650	3600	3600	3600	3600	3600
	14	3250	3250	3250	3250	3250	3250	3200	14	3800	3800	3750	3750	3750	3750	3750
2	16	3450	3450	3450	3450	3450	3400	3400	16	3950	3900	3900	3900	3900	3900	3900
2	18	3700	3650	3650	3650	3650	3600	3600	18	4050	4050	4050	4050	4050	4050	4050
	20	3900	3900	3900	3900	3850	3850	3850	20	4200	4200	4200	4200	4200	4200	4200
	22 24	4100 4300	4100 4300	4050 4300	4050 4300	4050 4300	4050 4300	4050 4300	22	4250 4400	4250 4400	4250 4400	4300 4400	4300 4450	4300 4450	4300 4450
	24 26	4300	4300	4300	4300	4300	4300	4300	24	4400	4400	4400	4400	4450	4450	4450
	20	4500	4300	4500	4500	4500	4500	4350	20	4500	4500	4550	4550	4550	4000	4800
	30	4950	4950	4950	4950	5000	5000	5000	30	4750	4750	4800	4800	4850	4850	4900
	32	5100	5100	5150	5150	5150	5200	5200	32	4850	4850	4900	4900	4950	5000	5000
	MAX	0100	0100	0100	0100	0100	0200	0200	MAX	+000	+000	+300	+500	+300	0000	0000
	1017 0 1								10000							
	2	4400	4350	4300	4250	4200	4150	4050	2	5050	5050	5100	5100	5100	5100	5100
	4	4700	4700	4650	4600	4500	4400	4300	4	5150	5150	5200	5200	5200	5200	5200
	6	4950	4950	4900	4850	4800	4700	4550	6	5250	5250	5300	5300	5300	5300	5300
	8	5150	5100	5100	5050	5000	4950	4800	8	5350	5350	5400	5400	5400	5400	5400
3	10	5250	5250	5250	5250	5200	5150	5050	10	5450	5450	5500	5500	5500	5500	5500
	12	5400	5400	5400	5400	5350	5300	5250	12	5500	5500	5550	5600	5600	5600	5650
	14	5600	5600	5550	5550	5500	5500	5450	14	5600	5650	5650	5700	5700	5700	5750
	16	5750	5750	5700	5700	5700	5650	5600	16	5650	5700	5700	5750	5750	5800	5800
	18	5900	5900	5850	5850	5850	5850	5800	18	5800	5800	5850	5850	5900	5900	5950
	20	6000	6000	6000	6000	6000	6000	6000	20	5900	5900	5950	5950	6000	6000	6050
	2	5700	5600	5550	5500	5450	5400	5300	2	6000	6050	6100	6100	6100	6100	6100
	4	5850	5750	5700	5650	5600	5550	5500	4	6100	6100	6150	6150	6150	6200	6200
	6	6000	5900	5850	5800	5750	5700	5650	6	6200	6200	6200	6250	6250	6250	6300
	8	6150	6100	6050	6000	5950	5900	5850	8	6250	6300	6300	6350	6350	6350	6400
4	10	6300	6300	6250	6200	6150	6150	6100	10	6350	6400	6400	6400	6450	6450	6450
	12	6450	6400	6400	6400	6350	6300	6250	12	6450	6450	6450	6500	6500	6550	6550
	14	6550	6500	6500	6500	6500	6450	6450	14	6500	6550	6550	6550	6600	6600	6650
	16	6600	6600	6600	6600	6600	6600	6550	16	6600	6600	6600	6650	6650	6700	6750
	18	6650	6650	6650	6650	6650	6650	6650	18	6650	6700	6700	6750	6750	6750	6800
	MAX								MAX							
	2	650	600	550	550	550	500	500	2	700	700	700	700	700	700	700
	4	700	650	650	600	600	550	550	4	750	750	750	750	750	750	750
	6	750	700	700	650	650	650	600	6	800	800	800	800	750	750	750
5	8	750	750	750	750	700	700	700	8	800	800	800	800	800	800	800
	10	800	800	800	750	750	750	750	10	850	850	850	850	850	850	850
	12	800	800	800	800	800	800	800	12	850	850	850	850	850	850	850
	14	850	850	850	850	850	850	850	14	850	850	850	850	850	850	850
	MAX	850	850	850	850	850	850	850	MAX	850	850	850	850	850	850	850

SIMU 1.6 up

FM Honeywell

for training only 2CM

AIRBUS TRAINING A320 SIMULATOR

LOADING FUEL

2.01.30

SEQ 001

P 15 REV 33

FLIGHT	CREW	OPERATING	MANUAL	

м	RE		ATTIT		LITERS 10NITC	DR REA	DING		RE		ATTIT		LITERS 10NITO	R REA	DING	
M	M A M D	B*	LEFT	WING		F	RIGHT	WING	M A M D	В	RIGHT	WING		F	LEFT	WING
N°	I I N	1	2	3	4	5	6	7		1	2	3	4	5	6	7**
	G								G							
	2	50	50	50	50	50	50	50	2	50	50	50	50	50	50	50
	4	50	50	50	50	50	50	50	4	50	50	50	50	50	50	50
	6	100	100	100	100	100	100	100	6	100	100	100	100	100	100	100
	8	150	150	150	150	150	150	150	8	150	150	150	150	150	150	150
	10	200	200	200	200	200	200	200	10	200	200	200	200	200	200	150
	12	250	250	250	250	250	250	250	12	250	250	250	250	250	250	200
	14	300	300	300	300	300	300	300	14	300	300	300	300	300	300	250
	16	350	350	350	350	360	350	350	16	350	350	350	350	350	350	300
	18	400	400	400	400	400	400	400	18	400	400	400	400	400	400	350
	20	450	450	450	450	450	450	450	20	450	450	450	450	450	450	450
	22	550	550	550	550	550	550	550	22	500	500	500	500	500	500	500
	24	600	600	600	600	600	600	600	24	550	550	550	550	550	550	550
	26	700	700	700	700	700	700	700	26	650	650	650	650	650	650	650
	28	800	800	800	800	800	800	800	28	700	700	700	700	700	700	700
	30	900	900	900	900	900	900	850	30	800	800	800	800	800	800	800
	32	1000	1000	1000	1000	1000	1000	950	32	900	900	900	900	900	900	850
1	34	1100	1100	1100	1100	1100	1100	1100	34	1000	1000	1000	1000	950	950	950
	36	1200	1200	1200	1200	1200	1200	1200	36	1100	1100	1100	1100	1050	1050	1050
	38	1300	1300	1300	1300	1300	1300	1300	38	1200	1200	1200	1200	1200	1150	1150
	40	1450	1450	1450	1450	1450	1450	1450	40	1300	1300	1300	1300	1300	1300	1300
	42	1550	1550	1550	1550	1550	1550	1550	42	1400	1400	1400	1400	1400	1400	1400
	44	1700	1700	1700	1700	1700	1700	1700	44	1500	1500	1500	1500	1500	1500	1500
	46	1800	1800	1800	1800	1800	1800	1800	46	1600	1600	1600	1600	1600	1600	1600
	48	1950	1950	1950	1950	1950	1950	1950	48	1700	1700	1700	1700	1700	1700	1700
	50	2100	2100	2100	2100	2100	2100	2100	50	1850	1850	1850	1850	1850	1850	1850
	52	2250	2250	2250	2250	2250	2250	2250	52	1950	1950	1950	1950	1950	1950	1950
	54	2400	2400	2400	2400	2400	2400	2450	54	2100	2100	2100	2100	2100	2100	2100
	56	2550	2550	2600	2600	2600	2600	2600	56	2250	2250	2250	2250	2250	2250	2250
	58	2750	2750	2750	2750	2750	2750	2750	58	2400	2400	2400	2400	2400	2400	2400
	60	2850	2850	2850	2850	2900	2900	2950	60	2550	2550	2550	2550	2550	2550	2550
	62	3000	3000	3000	3050	3050	3050	3100	62	2700	2700	2700	2700	2700	2700	2700
	63	3050	3050	3050	3100	3150	3150	3200	63	2750	2750	2750	2750	2750	2750	2750
	MAX	3350	3350	3350	3350	3400	3450	3500	MAX	3000	3000	3000	3000	3000	3000	3000

* GRID SQUARE LETTER

** GRID SQUARE NUMBER

AIRBUS TRAINING

M.

A320

SIMULATOR

LOADING FUEL

2.01.30 P 16

SEQ 001

REV 33

FLIGHT CREW OPERATING MANUAL

м	R E M A		ATTIT		LITERS 10NITC	IR REA	DING		R E M A		ATTIT		LITERS 10NITO	R REA	DING	
М	M D	В	LEFT	WING		F	RIGHT	WING	MD	В	RIGHT	WING		F	LEFT	WING
N°		1	2	3	4	5	6	7		1	2	3	4	5	6	7
	G								G							
	2	2350	2350	2300	2300	2250	2200	2200	2	2800	2750	2750	2750	2700	2700	2650
	4	2550	2500	2500	2450	2450	2400	2400	4	2950	2950	2900	2900	2900	2900	2850
	6	2750	2700	2700	2650	2650	2600	2600	6	3100	3100	3100	3100	3100	3050	3050
	8	2850	2850	2800	2800	2800	2750	2750	8	3200	3200	3200	3200	3200	3200	3150
	10	3000	3000	3000	3000	3000	2950	2900	10	3400	3400	3350	3350	3350	3350	3300
	12	3150 3350	3150	3200	3150	3150	3150	3100	12	3550	3550	3550	3550 3700	3500	3500	3450
	14 16	3550	3350 3550	3350 3550	3350 3550	3350 3500	3300 3500	3300 3450	14	3750 3900	3700 3850	3700 3850	3700	3650 3850	3650 3800	3650 3800
2	18	3550	3750	3550	3550	3500	3500	3450	18	4050	4000	4000	4000	4000	4000	3950
1	20	4000	3950	3950	3950	3950	3900	3900	20	4200	4150	4150	4000	4000	4000	4150
	20	4150	4100	4100	4100	4100	4100	4100	22	4250	4250	4250	4250	4250	4250	4250
	24	4300	4300	4300	4300	4300	4300	4300	24	4400	4400	4400	4400	4400	4400	4400
	26	4500	4500	4500	4500	4500	4500	4500	26	4500	4500	4500	4550	4550	4550	4550
	28	4700	4700	4700	4700	4700	4750	4750	28	4650	4650	4650	4650	4700	4700	4750
	30	4850	4900	4900	4900	4950	4950	4950	30	4750	4750	4800	4800	4850	4850	4900
	32	5050	5100	5100	5100	5100	5150	5150	32	4850	4900	4900	4950	4950	5000	5050
	MAX								MAX							
	2	4550	4500	4500	4450	4400	4350	4300	2	5000	5000	5000	5000	5000	5000	4950
	4	4800	4800	4800	4750	4650	4600	4500	4	5100	5100	5100	5100	5100	5100	5100
	6	5050	5000	5000	5000	4900	4850	4750	6	5200	5200	5200	5250	5200	5200	5200
	8	5150	5150	5150	5150	5100	5000	5000	8	5300	5300	5350	5350	5350	5350	5350
3	10	5300	5300	5300	5300	5250	5200	5150	10	5400	5400	5450	5450	5450	5450	5450
	12	5450	5450	5450	5450	5400	5400	5350	12	5500	5500	5550	5550	5550	5550	5550
	14 16	5600 5700	5600 5700	5600 5700	5550 5700	5550 5700	5550 5700	5500 5700	14	5600 5700	5600 5700	5650 5700	5650 5750	5650 5750	5650 5750	5700 5800
	18	5850	5850	5850	5850	5850	5850	5850	18	5700	5700	5800	5850	5850	5850	5900
	20	6000	6000	6050	6050	6050	6000	6000	20	5900	5900	5950	5950	6000	6000	6000
	MAX	0000	0000	0030	0000	0000	0000	0000	MAX	3300	3300	3330	3330	0000	0000	0000
	10100								101AV							
	2								2	5950	5950	6100	6000	6050	6050	6050
	4	5850	5750	5700	5650	5600	5600	5600	4	6050	6050	6100	6100	6100	6100	6150
	6	6000	6000	5950	5900	5850	5800	5800	6	6150	6150	6200	6200	6200	6200	6200
	8	6150	6150	6100	6100	6050	6000	6000	8	6250	6250	6250	6300	6300	6300	6300
4	10	6300	6300	6250	6250	6250	6200	6150	10	6350	6350	6350	6400	6400	6400	6400
	12	6400	6400	6400	6400	6350	6350	6300	12	6400	6450	6450	6450	6500	6500	6500
	14	6500	6500	6500	6500	6500	6450	6450	14	6500	6500	6550	6550	6600	6600	6600
	16	6600	6600	6600	6600	6550	6550	6550	16	6600	6600	6600	6650	6650	6700	6700
	18	6760	6770	6770	6770	6770	6770	6760	18	6750	6770	6800	6830	6850	6870	6880
	MAX								MAX							
		05.0	05.0	000	000	000				750	700	700	700	700	700	700
	2	650	650	600	600	600	550	550	2	750	700	700	700	700	700	700
	4 6	750 750	700 750	700 750	650 700	650 700	600 650	600 650	4	750 800	750 800	750 800	750 800	750 750	750 750	750 750
5	8	750	750 800	750	700	750	750	700	8	800	800	800	800	800	800	750
5	0 10	800	800	800	800	800	750	750	10	850	850	850	850	800	800	800
	10	800	800	800	800	800	750 800	750 800	12	850	850	850	850	800	800	800
	14	850	850	850	850	850	850	850	14	850	850	850	850	850	850	850
	MAX	850	850	850	850	850	850	850	MAX	850	850	850	850	850	850	850
	IVIAA	000	000	000	000	000	000	000		000	000	000	000	000	000	000

2CM ALL

SIMU 1.6 up

FM Honeywell

for training only 2CM

AIRBUS TRAINING A320 SIMULATOR

LOADING FUEL

2.01.30

SEQ 001

P 17 REV 33

FLIGHT CREW OPERATING MANUAL

м	R E		ATTIT		LITERS 10NITO)r rea	DING		R E		ATTIT	ude n	LITERS 10NITO	R REA	DING	
M	M A M D	C*	LEFT	WING		Е	RIGHT	WING	M A M D	С	RIGHT	WING		Е	LEFT	WING
N°		1	2	3	4	5	6	7		1	2	3	4	5	6	7**
	N G								N G							
	2	50	50	50	50	50	50	50	2	50	50	50	50	50	50	50
	4	50	50	50	50	50	50	50	4	50	50	50	50	50	50	50
	6	100	100	100	100	100	100	100	6	100	100	100	100	100	100	100
	8	150	150	150	150	150	150	150	8	150	150	150	150	150	150	150
	10	200	200	200	200	200	200	200	10	200	200	200	200	200	200	150
	12	250	250	250	250	250	250	250	12	250	250	250	250	250	250	200
	14	300	300	300	300	300	300	300	14	300	300	300	300	300	300	250
	16	350	350	350	350	350	350	350	16	350	350	350	350	350	350	350
	18	400	400	400	400	400	400	400	18	400	400	400	400	400	400	400
	20	450	450	450	450	450	450	450	20	450	450	450	450	450	450	450
	22	550	550	550	550	500	500	500	22	500	500	500	500	500	500	500
	24	600	600	600	600	600	600	600	24	600	600	600	600	600	550	550
	26	700	700	700	700	650	650	650	26	650	650	650	650	650	650	650
	28	750	750	750	750	750	750	750	28	750	750	750	750	750	700	700
	30	850	850	850	850	850	850	850	30	800	800	800	800	800	800	800
	32	950	950	950	950	950	950	950	32	900	900	900	900	900	900	900
1	34	1050	1050	1050	1050	1050	1050	1050	34	1000	1000	1000	1000	1000	1000	1000
	36	1200	1150	1150	1150	1150	1150	1150	36	1100	1100	1100	1100	1100	1100	1100
	38	1300	1300	1300	1250	1250	1250	1250	38	1200	1200	1200	1200	1200	1200	1200
	40	1400	1400	1400	1400	1400	1400	1400	40	1300	1300	1300	1300	1300	1300	1300
	42	1500	1500	1500	1500	1500	1500	1500	42	1400	1400	1400	1400	1400	1400	1400
	44	1600	1600	1600	1600	1600	1600	1600	44	1550	1550	1500	1500	1500	1500	1500
	46	1750	1750	1750	1750	1750	1750	1750	46	1650	1650	1650	1650	1650	1650	1650
	48	1850	1850	1850	1850	1900	1900	1900	48	1800	1750	1750	1750	1750	1750	1800
	50	2000	2000	2000	2000	2000	2000	2050	50	1900	1900	1900	1900	1900	1900	1900
	52	2150	2150	2150	2150	2150	2150	2200	52	2000	2000	2000	2000	2000	2000	2050
	54	2300	2300	2300	2300	2300	2300	2350	54	2150	2150	2150	2150	2150	2150	2200
	56	2450	2500	2500	2500	2500	2500	2500	56	2300	2300	2300	2300	2300	2300	2350
	58	2600	2650	2650	2650	2650	2650	2700	58	2450	2450	2450	2450	2450	2500	2500
	60	2800	2800	2800	2800	2850	2850	2850	60	2600	2600	2600	2600	2600	2650	2650
	62	2900	2950	2950	2950	2950	2950	3000	62	2750	2750	2750	2750	2800	2800	2800
	63	2950	3000	3000	3000	3050	3050	3100	63	2800	2800	2800	2800	2850	2850	2850
	MAX	3250	3250	3300	3350	3350	3350	3400	MAX	3100	3100	3100	3100	3100	3100	3100

* GRID SQUARE LETTER

** GRID SQUARE NUMBER

AIRBUS TRAINING

M.

A320

LOADING

FUEL

2.01.30

SEQ 001

P 18 REV 33

FLIGHT CREW OPERATING MANUAL

M M D C LEFT WING E RIGHT WING M D C RIGHT WING E 2 2450 2400 2400 2350 2350 2350 22 2700 2650 260 2600 260 2600 260 <t< th=""><th>и I.</th><th>R E M A</th><th></th><th></th><th></th><th>liters Ide re</th><th></th><th></th><th></th><th>R E M A</th><th></th><th>ATTIT</th><th>UDE N</th><th>LITERS IONITO</th><th></th><th>DING</th><th></th></t<>	и I.	R E M A				liters Ide re				R E M A		ATTIT	UDE N	LITERS IONITO		DING	
N° N 1 2 3 4 5 6 7 N 1 2 3 4 5 Q 2 2450 2400 2400 2350 2350 2350 2 2700 2650	VI I N		С	LEFT	WING		Е	RIGHT	WING		С	RIGHT	WING		Ε	LEFT	WING
G G G G G C 2 2450 2400 2400 2350 2350 2500 2 2700 2650 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 3			1	2	3	4	5	6	7		1	2	3	4	5	6	7
4 2650 2600 2600 2600 2550 2500 4 2800<																	
6 2800 2800 2800 2750 2750 2750 2750 3700 30		2	2450	2400	2400	2400	2350	2350	2350	2	2700	2650	2650	2600	2600	2550	2550
8 2900 2900 2900 2900 2900 2800 2850 2850 8 3100<		4	2650	2600	2600	2600	2550	2550	2500	4	2850	2800	2800	2800	2800	2750	2750
10 3100 3100 3100 3100 3000 3000 3000 3200 3250 3250 3250 3250 3250 3250 3250 3250 3250 3250 3250 3250 3450 350 350 18 4000 3950<	L	6					2750	2750	2700	6	3000	3000	3000			2950	2900
12 3250 3250 3250 3250 3200 12 3450 3450 3450 3450 3450 3450 3450 3650 360		-								-						3100	3050
14 3450 3450 3450 3400 3300 3350 16 3850 3850 3800 3800 3550 3550 20 4050 4050 4000 4200 4250																3250	3200
16 3650 3650 3600 3500 3550 3550 18 3850 3850 3800 3800 3750 3750 20 4050 4050 4000 4000 3950 3950 3950 3950 3950 3950 3250 4350	F															3400	3350
2 18 3850 3800 3800 3750 3750 20 4050 4050 4000 4000 3950																3550	3550
10 10 4050 4050 4000 4000 395	, ⊢															3750	3700
22 4200 4200 4150 4150 4100 4100 24 4350 4350 4300 4300 4300 4300 22 4250 4250 4200 4200 26 4500 5000 5000	۷ L															3900	3900
24 4350 4300 4500 4200 4900 4	⊢															4100 4200	4100 4200
26 4500 4500 4500 4500 4500 4500 26 4500 450	H																
28 4650 4650 4650 4700 4700 4700 4700 30 4850 4850 4850 4900 4900 4900 30 4750 4800 4900 <td>-</td> <td></td> <td>4350 4500</td> <td>4350 4550</td>	-															4350 4500	4350 4550
30 4850 4850 4850 4900 4900 4900 30 4750 4800 4800 4800 4800 32 5000 5000 5000 5050 5050 5050 5000 32 4900																4500	4550
32 5000 5000 5050 5050 5100 32 4900 4900 4950 4950 5000 MAX -	H															4700	4850
MAX MAX <td>H</td> <td></td> <td>5000</td> <td>5050</td>	H															5000	5050
2 4650 4650 4600 4500 4500 4 4900 <td>H</td> <td></td> <td>0000</td> <td>3000</td> <td>3000</td> <td>3030</td> <td>3030</td> <td>3030</td> <td>3100</td> <td></td> <td>4300</td> <td>4500</td> <td>4930</td> <td>4900</td> <td>3000</td> <td>3000</td> <td>3030</td>	H		0000	3000	3000	3030	3030	3030	3100		4300	4500	4930	4900	3000	3000	3030
4 4900 4900 4900 4800 4750 4650 4 5050 5100 5100 5100 5100 5100 5100 5100 500 5200 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>101AA</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										101AA							
4 4900 4900 4900 4800 4750 4650 4 5050 5100 5100 5100 5100 5100 5100 5100 500 5200 </td <td></td> <td>2</td> <td>4650</td> <td>4650</td> <td>4650</td> <td>4600</td> <td>4600</td> <td>4500</td> <td>4500</td> <td>2</td> <td>4900</td> <td>4900</td> <td>4900</td> <td>4900</td> <td>4900</td> <td>4850</td> <td>4800</td>		2	4650	4650	4650	4600	4600	4500	4500	2	4900	4900	4900	4900	4900	4850	4800
6 5100 5100 500 500 4900 6 5150 5200 <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5050</td> <td>5000</td>		-								_						5050	5000
3 10 5300 5350 5350 5300 5300 5250 12 5450 5450 5450 5450 5450 5400																5150	5150
3 10 5300 5350 5350 5300 5250 12 5450 5450 5450 5450 5450 5400 14 5600 5600 5600 5600 5600 5500 16 5700 5700 5700 5700 5700 5700 18 5800 5850 5850 5850 5850 5850 5850 20 5950 5950 6000 6000 6000 6000 6000 20 5950		8	5200	5200	5200	5200	5200	5150	5100	8	5250	5300	5300	5300	5300	5300	5300
14 5600 5600 5600 5600 5550 16 5700 5900 </td <td>3 </td> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5400</td> <td>5400</td>	3	10								10						5400	5400
16 5700 500 500 500		12	5450	5450	5450	5450	5450	5450	5400	12	5500	5500	5500	5500	5550	5550	5550
18 5800 5850 5800 5900 5		14	5600	5600	5600	5600	5600	5600	5550	14	5600	5600	5600	5650	5650	5650	5650
20 5950 5950 6000 6100 6150 6150 6		16	5700	5700	5700	5700	5700	5700	5700	16	5700	5700	5750	5750	5750	5750	5800
2 5800 5750 5700 57		18	5800	5850	5850	5850	5850	5850	5850	18	5800	5800	5850	5850	5900	5900	5900
4 5950 5900 5850 5850 5800 5800 5800 6 6000 600 600 <td></td> <td>20</td> <td>5950</td> <td>5950</td> <td>6000</td> <td>6000</td> <td>6000</td> <td>6000</td> <td>6000</td> <td>20</td> <td>5900</td> <td>5950</td> <td>5950</td> <td>6000</td> <td>6000</td> <td>6000</td> <td>6000</td>		20	5950	5950	6000	6000	6000	6000	6000	20	5900	5950	5950	6000	6000	6000	6000
4 5950 5900 5850 5850 5800 5800 5800 6 6000 600 600 <td></td>																	
4 6 6050 6050 6000 6000 5950 5950 6 6100 6100 6150 <td></td> <td>2</td> <td>5800</td> <td>5750</td> <td>5750</td> <td>5700</td> <td>5700</td> <td>5700</td> <td>5700</td> <td>2</td> <td>5900</td> <td>5900</td> <td>5900</td> <td>5900</td> <td>5950</td> <td>5950</td> <td>5950</td>		2	5800	5750	5750	5700	5700	5700	5700	2	5900	5900	5900	5900	5950	5950	5950
8 6200 6150 6150 6150 6100 6100 68 6200 6250	Ľ	· ·			0000						0000		0000			6050	6050
4 10 6300 6300 6300 6300 6200 6250 6250 12 6400	L															6150	6150
10 6300 6300 6300 6400 6	۰ L	-								-						6250	6250
14 6500 6600 600 600 600 600<	⁴ ┝	1.4														6350	6350
16 6600 600 600 600	F															6450	6450
18 6730 6740 6750 6750 6760 6770 6770 6790 6800 MAX - <t< td=""><td>⊢</td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>6550</td><td>6550</td></t<>	⊢	<u> </u>														6550	6550
MAX MAX <td>⊢</td> <td></td> <td>6600</td> <td>6600</td>	⊢															6600	6600
2 700 700 650 650 600 600 2 750 700 700 700 4 750 750 700 700 650 650 650 650 650 650 750 750 700 6 800 800 750	H		b/3U	b/4U	b/5U	b/5U	0/bU	0/6U	0//U		b/5U	b/5U	b//U	b/9U	0000	6810	6820
4 750 750 700 650 650 650 4 750 750 750 750 700 700 700 700 700 66 800 800 750	+	IVIAX								IVIAX							
4 750 750 700 700 650 650 4 750 750 750 750 700 700 700 700 700 650 650 4 750 750 750 750 700 700 700 6 800 800 750	\vdash		700	700	650	650	600	600	600		750	700	700	700	700	650	650
5 6 750 750 750 750 700 700 700 6 800 800 750 750 750	H															700	700
	_															750	750
	ᅡ	8	800	800	800	750	750	750	750	8	800	800	800	800	800	800	800
10 800 800 800 800 800 800 800 800 800 8	\vdash															800	800
12 850 850 800 800 800 800 800 12 850 850 850 850 850 850 850 850 850 850	H															850	850
14 850 850 850 850 850 850 850 850 850 850	F															850	850

LOADING FUEL

2.01.30

SEQ 001 REV 33

P 19

FLIGHT CREW OPERATING MANUA	L
-----------------------------	---

м	R E M A		ATTIT	i Ude n	LITERS 10NITC		ADING		R E M A		ATTIT		LITERS 10NIT	S Dr Re <i>i</i>	ADING		м
M	ΜD	D*		BOT	in wi	IGS			ΜD	D		B01	fh Wi	VGS			M
Ұ	I I N	1	2	З	4	5	6	7		1	2	3	4	5	6	7**	N°
	G								G								
	2	50	50	50	50	50	50	50	18	3950	3900	3900	3850	3850	3850	3800	
	4	100	100	100	100	100	100	100	20	4100	4100	4050	4050	4050	4000	4000	
	6	100	100	100	100	100	100	100	22	4200	4200	4150	4150	4150	4150	4150	
	8	150	150	150	150	150	150	150	24	4350	4350	4350	4300	4300	4300	4300	
	10	200	200	200	200	200	200	200	26	4500	4500	4500	4500	4500	4500	4500	2
	12	250	250	250	250	250	250	250	28	4650	4650	4650	4650	4650	4700	4700	
	14	300	300	300	300	300	300	300	30	4800	4800	4800	4850	4850	4850	4900	
	16	350	350	350	350	360	350	350	32	4950	4950	5000	5000	5000	5050	5100	
	18	400	400	400	400	400	400	400	MAX								
	20	450	450	450	450	450	450	450									
	22	500	500	500	500	500	500	500	2	4800	4800	4800	4800	4750	4750	4600	
	24	600	600	600	600	600	600	600	4	5000	5000	5000	5000	4950	4900	4850	
	26	650	650	650	650	650	650	650	6	5100	5150	5150	5100	5100	5100	5050	
	28	750	750	750	750	750	750	750	8	5250	5250	5250	5250	5250	5200	5200	
	30	850	850	850	850	850	850	850	10	5350	5350	5350	5400	5400	5350	5350	3
	32	950	950	950	950	950	950	950	12	5450	5500	5500	5500	5500	5500	5500	-
1	34 36	1050 1150	1050 1150	1050 1150	1050 1150	1050 1150	1000 1100	1000 1100	14 16	5600 5700	5600 5700	5600 5700	5600 5750	5600 5750	5600 5750	5600 5750	
	38	1250	1250	1250	1250	1250	1250	1250	18	5800	5800	5850	5850	5850	5900	5900	
	40	1350	1350	1350	1350	1350	1350	1350	20	5900	5900	5950	5950	5950	6000	6000	
	40	1450	1450	1450	1450	1450	1450	1450	MAX	3900	3900	3930	3930	3930	0000	0000	
	44	1550	1550	1550	1550	1550	1550	1550	MIGA								
	46	1700	1700	1700	1700	1700	1700	1700	2	5900	5850	5800	5800	5800	5800	5800	
	48	1800	1800	1800	1800	1800	1800	1800	4	6000	5950	5950	5950	5950	5950	5950	
	50	1950	1950	1950	1950	1950	1950	1950	6	6100	6100	6050	6050	6050	6050	6050	
	52	2100	2100	2100	2100	2100	2100	2100	8	6200	6200	6200	6200	6200	6200	6200	
	54	2250	2250	2250	2250	2250	2250	2250	10	6300	6300	6300	6300	6300	6300	6300	4
	56	2400	2400	2400	2400	2400	2400	2400	12	6400	6400	6400	6400	6400	6400	6400	
	58	2550	2550	2550	2550	2550	2600	2600	14	6500	6500	6500	6500	6500	6500	6500	
	60	2700	2700	2700	2700	2700	2750	2750	16	6600	6600	6600	6600	6600	6600	6600	
	62	2850	2850	2850	2850	2850	2900	2900	18	6750	6750	6770	6800	6800	6810	6820	
	63	2900	2900	2900	2900	2900	2950	2950	MAX								
	MAX	3050	3050	3100	3100	3100	3150	3150									
	2	2550	2550	2500	2500	2450	2450	2450	2	700	700	700	650	650	650	600	
	4	2750	2700	2700	2700	2650	2650	2600	4	750	750	750	700	700	700	650	
	6	2900	2900	2850	2850	2850	2800	2800	6	800	800	750	750	750	750	700	
2	8	3000	3000	2950	2950	2950	2950	2900	8	800	800	800	800	800	750	750	5
	10	3200	3150	3150	3150	3150	3100	3050	10	850	800	800	800	800	800	800	
	12	3350	3350	3350	3350	3300	3300	3250	12	850	850	850	850	850	850	850	
	14	3550	3550	3550	3500	3500	3450	3450	14	850	850	850	850	850	850	850	
	16	3750	3750	3700	3700	3650	3650	3600	MAX	850	850	850	850	850	850	850	

* GRID SQUARE LETTER

** GRID SQUARE NUMBER

LOADING FUEL

2.01.30

SEQ 100 REV 33

P 20

CENTER TANK (LITERS)

	E A		ATTI	UDE N		R REA	DING		R E M A		ATTIT	UDE N			DING	
1	o 🕒			LINES	S A AN	D G*			M D			LINE	S B AN	ND F		
		1	2	3	4	5	6	7		1	2	3	4	5	6	7**
	G								G							
2	_	800	300	350	350	350	350	350	2	300	300	300	300	300	300	350
4	_	100	450	450	500	500	500	500	4	400	450	450	450	500	500	500
6	_	600	600 750	650 750	650 750	650	650 750	650 750	6	600 750	600 750	650	650 750	650 750	650 750	600 750
8 10	_	750 900	850	850	850	750 850	850	900	8	900	850	750 850	850	850	850	900
12)50	1000	1000	1000	1000	1000	1050	12	1050	1000	1000	1000	1000	1000	1050
14		250	1250	1200	1200	1200	1200	1200	14	1250	1200	1200	1200	1200	1200	1200
16	14	150	1450	1400	1400	1400	1400	1400	16	1450	1450	1450	1450	1400	1400	1400
18	16	650	1650	1600	1600	1600	1600	1600	18	1700	1700	1650	1650	1600	1600	1600
20	19	900	1850	1850	1850	1850	1800	1800	20	1900	1900	1900	1850	1850	1850	1800
22		00	2050	2050	2050	2050	2000	2000	22	2100	2100	2100	2050	2050	2000	2000
24		300	2250	2250	2250	2200	2200	2150	24	2300	2300	2250	2250	2200	2200	2150
26	_	150	2450	2450	2450	2450	2400	2350	26	2500	2500	2450	2450	2400	2350	2350
28 30		700 900	2650 2850	2650 2850	2650 2850	2600 2800	2550 2800	2550 2750	28 30	2700 2900	2700 2900	2650 2900	2650 2850	2600 2800	2550 2800	2500 2750
30)50	3050	3050	3050	3000	3000	2750	30	3100	3100	3100	3050	3050	3000	2950
34		250	3250	3250	3250	3200	3200	3150	34	3300	3300	3300	3250	3250	3200	3150
36		500	3500	3450	3450	3450	3400	3400	36	3500	3500	3500	3450	3450	3400	3400
38		700	3700	3700	3700	3650	3650	3600	38	3700	3700	3700	3700	3650	3650	3600
40	39	900	3900	3900	3900	3900	3850	3800	40	3950	3950	3950	3900	3900	3850	3800
42		00	4100	4100	4100	4100	4050	4050	42	4150	4150	4150	4100	4100	4050	4000
44		350	4350	4350	4300	4300	4250	4250	44	4350	4350	4350	4300	4300	4250	4200
46		50	4550	4550	4550	4500	4500	4450	46	4550	4550	4550	4550	4500	4500	4450
48		750	4750	4750	4700	4700	4650	4650	48	4750	4750	4750	4750	4700	4700	4650
50 52		950 50	4950 5150	4950 5150	4950 5150	4900 5100	4900 5100	4850 5050	50 52	4950 5150	4950 5150	4950 5150	4950 5150	4900 5150	4900 5100	4850 5050
52		100	5400	5400	5400	5350	5300	5250	54	5400	5400	5400	5400	5350	5300	5250
56		500	5600	5600	5600	5550	5500	5450	54	5600	5600	5600	5600	5550	5500	5450
58		300	5800	5800	5750	5750	5700	5650	58	5800	5800	5800	5800	5750	5750	5700
60	60)00	6000	6000	5950	5950	5900	5900	60	6000	6000	6000	6000	5950	5950	5900
62	62	200	6200	6200	6150	6150	6100	6100	62	6200	6200	6200	6200	6150	6150	6100
64	64	100	6400	6400	6400	6350	6300	6300	64	6400	6400	6400	6400	6350	6350	6300
66		600	6600	6600	6600	6550	6550	6500	66	6600	6600	6600	6600	6550	6550	6500
68	_	300	6800	6750	6750	6750	6700	6700	68	6800	6800	6800	6800	6750	6750	6700
70		000	6950	6950	6950	6900	6900	6900	70	7000	7000	7000	6950	6950	6950	6900
72		200	7200 7400	7150 7350	7150 7350	7100 7300	7100 7300	7050 7300	72	7200 7400	7200 7400	7150 7350	7150 7350	7150 7350	7100 7300	7100 7300
74	_	100 600	7600	7350	7350	7300	7300	7500	74	7400	7400	7350	7350	7550	7500	7500
70	_	350 350	7800	7800	7800	7550	7700	7700	70	7800	7800	7800	7750	7550	7700	7500
MAX		950	7900	7900	7900	7850	7800	7800	MAX	7900	7900	7850	7850	7850	7800	7800

* GRID SQUARE LETTER

** GRID SQUARE NUMBER

AIREUS TRAINING A320 SIMULATOR

LOADING FUEL

2.01.30

SEQ 100

P 21 REV 33

FLIGHT CREW OPERATING MANUAL

м	R E A		ATTI	TUDE N	LITERS 10NITO		DING		R E M A		ATTI		liters 10nito	R REA	DING	
M	Ď			LINE	SCAN	ND E			M D			L	INES D)	-	
	I N	1	2	3	4	5	6	7	I I N	1	2	3	4	5	6	7
	G								G							
2		250	300	300	300	300	300	300	2	300	300	300	300	300	300	300
4		400	450	450	500	500	500	450	4	450	450	500	500	500	500	500
6		600	600	650	650	650	600	600	6	600	600	650	650	650	650	600
8		750 850	750 850	750 850	750 850	750 850	750 850	750 850	8	750 900	750 900	750 900	750 900	750 900	750 900	750 900
12		1050	1000	1000	1000	1000	1000	1000	10	1050	1000	1000	1000	1000	1000	1050
14		1250	1200	1200	1200	1200	1200	1200	14	1250	1250	1200	1200	1200	1200	1200
16		1450	1450	1450	1400	1400	1400	1400	16	1500	1450	1450	1450	1400	1400	1400
18		1650	1650	1650	1650	1600	1600	1600	18	1700	1700	1700	1650	1650	1650	1600
20)	1900	1900	1900	1900	1900	1850	1800	20	1900	1900	1900	1900	1900	1850	1850
22	2	2100	2100	2100	2100	2050	2050	2000	22	2100	2100	2100	2100	2050	2050	2000
24		2300	2300	2250	2250	2250	2200	2200	24	2300	2300	2300	2250	2250	2200	2200
26	_	2500	2500	2450	2450	2400	2400	2350	26	2500	2500	2450	2450	2400	2400	2350
28		2700	2650	2650	2650	2600	2600	2550	28	2700	2700	2700	2650	2600	2600	2550
30		2900	2900	2850	2850	2800	2800	2750	30	2900	2900	2900	2900	2850	2800	2750
32		3100 3300	3100 3300	3100 3300	3100 3250	3050 3250	3050 3200	3000 3200	32 34	3100 3300	3100 3300	3100 3300	3100 3300	3050 3250	3050 3250	3000 3200
34		3500	3500	3500	3500	3450	3450	3400	36	3500	3500	3500	3500	3450	3450	3400
38		3700	3700	3700	3700	3700	3650	3600	38	3700	3750	3750	3700	3700	3650	3650
40		3950	3950	3950	3950	3900	3900	3850	40	3950	3950	3950	3950	3900	3900	3850
42	2	4150	4150	4150	4150	4100	4100	4050	42	4150	4150	4150	4150	4100	4100	4050
44	Ļ	4350	4350	4350	4350	4300	4300	4250	44	4350	4350	4350	4350	4300	4300	4250
46	ì	4550	4550	4550	4550	4500	4500	4450	46	4550	4550	4550	4550	4500	4500	4450
48		4750	4750	4750	4750	4750	4700	4650	48	4750	4750	4750	4750	4700	4700	4650
50		4950	4950	4950	4950	4900	4900	4850	50	4950	4950	4950	4950	4900	4900	4850
52		5150	5150	5150	5150	5100	5100	5050	52	5200	5200	5200	5150	5100	5100	5050
54		5400 5600	5400 5600	5400 5600	5400 5600	5350 5550	5300 5500	5250 5450	54 56	5400 5600	5400 5600	5400 5600	5400 5600	5350 5550	5300 5500	5250 5450
58		5800	5800	5800	5800	5750	5700	5650	58	5800	5800	5800	5800	5750	5700	5650
60		6000	6000	6000	6000	5950	5950	5900	60	6000	6000	6000	6000	5950	5950	5900
62		6200	6200	6200	6200	6150	6100	6100	62	6200	6200	6200	6200	6150	6150	6100
64	Ļ	6400	6400	6400	6400	6350	6300	6300	64	6400	6400	6400	6400	6350	6350	6300
66	i	6600	6600	6600	6600	6550	6550	6500	66	6600	6600	6600	6600	6550	6550	6500
68	}	6800	6800	6800	6750	6750	6700	6700	68	6800	6800	6800	6800	6750	6750	6700
70		7000	7000	7000	6950	6950	6900	6900	70	7000	7000	7000	7000	6950	6950	6900
72		7200	7200	7150	7150	7150	7150	7100	72	7200	7200	7200	7150	7150	7150	7100
74		7400	7400	7400	7350	7350	7300	7300	74	7400	7400	7400	7350	7350	7350	7300
76		7600	7600	7600	7550	7550	7500	7500	76	7600	7600	7600	7550	7550	7550	7500
78 MA		7800 7900	7800 7900	7800 7850	7750 7850	7750 7850	7700 7800	7700 7800	78 MAX	7800 7900	7800 7900	7800 7900	7750 7900	7750 7850	7700	7700 7800
	N.	1900	1900	/000	1000	1000	1000	1000	IVIAA	1900	1900	7900	1900	1000	1000	1000

AIRBUS TRAINING A320	LOADING	2.01.40	P 1
FLIGHT CREW OPERATING MANUAL	WEIGHT and BALANCE	SEQ 001	REV 28

LOAD and TRIM SHEET

This chart allows the determination of Aircraft CG location (MAC) function of dry operating weight, pantry adjustment, cargo loads, passengers and fuel on board.

The operational limits shown on the load and trim sheet are more restrictive than the certified limits because error margins have been taken into account.

The load and trim sheet needs to be updated when :

- a modification which changes the aircraft certified limits is included or
- a modification (cabin layout, cargo arrangement ...) which influences the operational limits is made.

It is the airline responsibility to define a load and trim sheet and to keep it up to date.

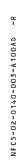
R On page 2 is a description of the Load and Trim Sheet utilization (see example p. 3), for a typical passenger arrangement.

Refer to customized load and trim sheet for preparing a revenue flight.

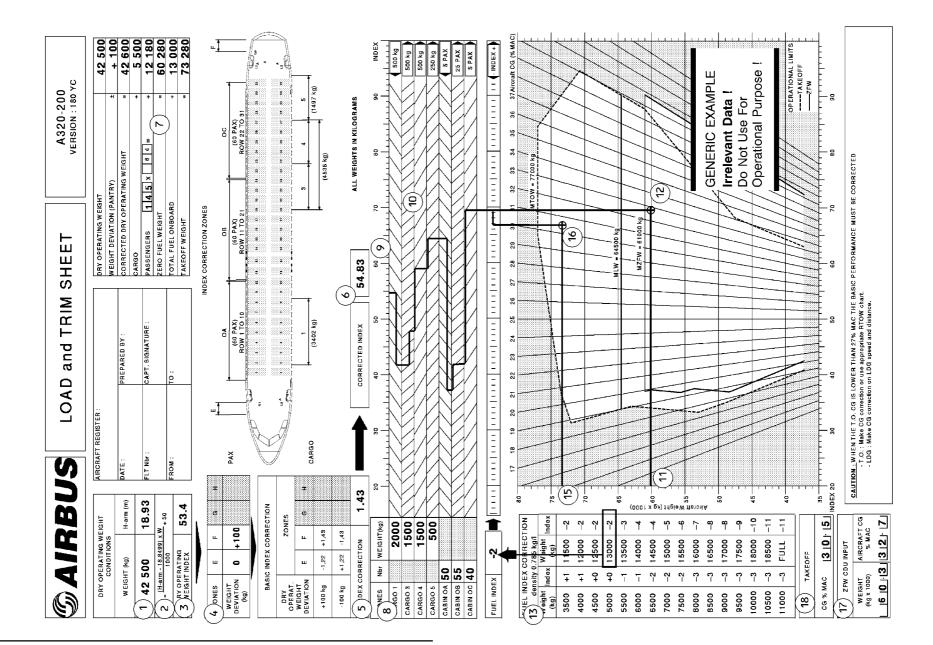
AIRBUS TRAINING	LOADING	2.01.40	P 2
	WEIGHT and BALANCE	SEQ 110	REV 28

R **DATA**

- R Dry Operating Weight = 42500 kg and CG = 27 % (H-arm = 18.93 m)
- R Deviation or adjustment = + 100 kg in zone F
- R Cargo = 5500 kg with the following distribution :
- R cargo 1 = 2000 kg; cargo 3 = 1500 kg; cargo 4 = 1500 kg; cargo 5 = 500 kg
- R Passengers = 145 pax with the following distribution :
- R cabin OA = 50; cabin OB = 55; cabin OC = 40
- R Fuel = 13000 kg


DESCRIPTION

- R a) Enter Master data in (1).
- R b) Compute Dry Operating Weight Index using the formula indicated in (2) and report in (3).
- R c) Dry Operating Index = 53.4.
- R d) Enter weight deviation or adjustment in (4) and read corresponding index variation in R (5) : + 1.43.
- R e) Calculate corrected index and report in (6) : 54.83.
- R f) Enter master data in table (7) and determine Zero Fuel Weight : 60280 kg and Takeoff
 R Weight : 73280 kg.
- R g) Enter cargo weight and passenger number per compartment in (8).
- R h) Enter index scale (9) with corrected index and proceed through cargo and passenger
 R scales (10).
- R i) From the final point draw a vertical line which intersects (12) the zero fuel weight horizontal line (11).
- R j) Check if the intersection point is within the Zero Fuel Weight operational limits, if not rearrange cargo loading.
- R k) Read in table (13) the fuel index correction : 2 and carry forward in fuel scale (14).
- R I) From this point draw a vertical line which intersects (16) the takeoff weight horizontal line (15).
- R m) Check if the intersection point is within the Takeoff Weight operational limits.
- R n) Read zero fuel weight and CG position : 32.7 % and fill in table (17).
- R o) Read takeoff CG position : 30.5 % and fill in table (18).


– CAUTION –

If there is no customized trim sheet for your airline in this section 2.01.40, $\underline{do \ not}$ use the information enclosed herein for day to day operation as margins and load C.G. vary with cabin and cargo layout.

<u>Note</u>: When referring to CG lower than 27 %, an operational margin is taken into account. It is the reason why performance at forward CG (lower than 25 %) must be used for operational CG lower than 27 %.

ALBELS TRAINING A320 FLIGHT CREW OPERATING MANUAL HUGHT CREW OPERATING MANUAL A320 HUGHT CREW OPERATING MANUAL

R

AIRBUS TRAINING A320	LOADING	2.01.40	P 4
FLIGHT CREW OPERATING MANUAL	WEIGHT and BALANCE	SEQ 110	REV 35

FUEL INDEX TABLE PER TANK

The fuel index table has been established assuming a fuel distribution in accordance with refuel distribution given in section 2.01.30 of this volume.

If after refueling the actual distribution deviates from the chart values, the actual and the trim sheet CG will show a discrepancy. The following tables allow to determine the fuel index taking into account the actual fuel quantity in each tank. To determine the actual takeoff CG enter the tables with the actual fuel quantities in each tank, read the fuel index for each tank and use their sum to enter the trim sheet. Check that the actual CG is inside the operational limits. If the CG is outside the limits transfer fuel to achieve a distribution in accordance with the chart or rearrange the load.

<u>Note</u> : These tables are valid only when used with the following formulae for the index : $I=W\times(H-arm-18.85)/1000+K$ or $I=[(CG-25)\times W\times 0.000042]+K$

(Weight in kg, H-arm in m)

<u>Example</u>

R

R

DATA : Fuel in left inner fuel tank = 4500 kg Fuel in right inner fuel tank = 4500 kg Fuel in left outer fuel tank = 200 kg Fuel in right outer fuel tank = FULL Fuel in center tank = 0 kg

		Weight		Index
1	Left	4500	_	3
Inner tank	Right	4500	-	3
Outor took	Left	200		0
Outer tank	Right	691	+	2
Center tank		0		0
TOTAL		9891	_	4

Enter the trim sheet with a fuel index of -4

AIRBUS TRAINING A320	LOADING	2.01.40	Р 5
FLIGHT CREW OPERATING MANUAL	WEIGHT and BALANCE	SEQ 110	REV 35

FUEL INDEX TABLES PER TANK

 $\begin{array}{c} \underline{Note}: \ These \ tables \ are \ valid \ only \ when \ used \ with \ the \ following \ formulae \ for \ the \ index: \\ R \\ R \\ R \\ (Weight \ in \ kg, \ H-arm \ in \ m) \end{array}$

Inner	Tanks	Outer	Tanks	Cente	r Tank
Weight	Index	Weight	Index	Weight	Index
500	- 1	250	1	500	- 1
1000	- 1	500	1	1000	- 1
1500	- 2	FULL	2	1500	- 2
2000	- 2			2000	- 3
2500	- 2			2500	- 3
3000	- 3			3000	- 4
3500	- 3			3500	- 5
4000	- 3			4000	- 6
4500	- 3			4500	- 7
5000	- 3			5000	- 7
FULL	- 2]		5500	- 8
				6000	- 9
				FULL	- 10

AIRBUS TRAINING A320	LOADING	2.01.40	P 6
SINULATOR FLIGHT CREW OPERATING MANUAL	WEIGHT and BALANCE	SEQ 001	REV 30

INTENTIONALLY LEFT BLANK

_					
	AIRBUS TRAINING	0	TAKEOFF	2.02.00	P 1
ļ		OR OPERATING MANUAL	CONTENTS	SEQ 100	REV 25
	02.00	CONTENTS			
	02.05	INTRODUCTIO	N		
R	02.10	- TAKEOFF PE - TAKEOFF CH	MPERATURE ENTRY) RFORMANCE IART DESCRIPTION INFORMATION	2	
	02.12	 Determina Speeds Extrapola Maximum 	Jlation (Temperature Entry) Tion of Maximum Takeoff Weight Al Tion Structural Takeoff Weight		
	02.14	 DEFINITION USE OF FLE REQUIREME RECOMMEN DETERMINA AND SPEED FLEXIBLE TA 	EOFF (TEMPERATURE ENTRY) OF FLEXIBLE TAKEOFF XIBLE TAKEOFF NTS IDATION TION OF FLEXIBLE TAKEOFF TEMPERATUI S KEOFF NOT POSSIBLE		
R	02.16	- TAKEOFF CH	EIGHT ENTRY) RFORMANCE IART DESCRIPTION	2	
	02.18	 Determina Speeds Extrapola Maximum 	Jlation (Weight Entry) Tion of Maximum Takeoff Weight Al Tion Structural Takeoff Weight		
	02.20	 DEFINITION USE OF FLE REQUIREME RECOMMEN DETERMINA AND SPEED FLEXIBLE TA 	EOFF (WEIGHT ENTRY) OF FLEXIBLE TAKEOFF XIBLE TAKEOFF NTS DATION TION OF FLEXIBLE TAKEOFF TEMPERATUI S KEOFF NOT POSSIBLE		

AIRBUS TRAINING		TAKEOFF	2.02.00	P 2
		CONTENTS	SEQ 001	REV 35
02.24	QNH/BLEEDS	CORRECTION		
02.25		Teeds 1/VR/V2 Limited by VMC		
02.40 R	 HOW TO PF CONF 1 + CONF 2 			
02.50	 CLOSE OBS REMOTE OB CLOSE OBS REMOTE OB CLOSE OBS 		1 2 3 4 5 6	

INTRODUCTION

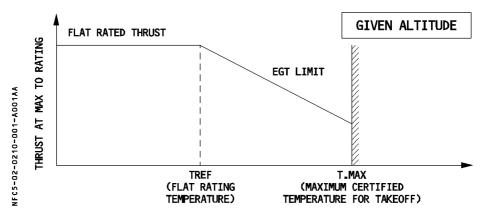
TAKEOFF CHARTS

Takeoff charts are required to provide performance at takeoff. It is possible to present the charts in two different ways, one of which is selected by the airline. The different presentations are :

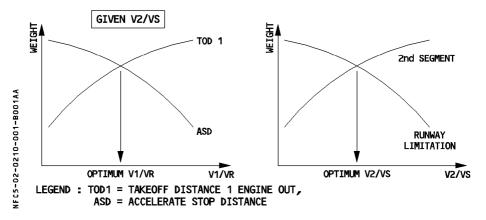
- temperature entry (temperature provided in the left column)

- weight entry (weight provided in the left column).

Both presentations are described here after. Sections 2.02.10, 2.02.12 and 2.02.14 are relative to temperature entry while 2.02.16, 2.02.18 and 2.02.20 are relative to weight entry.


The airline may request Airbus to delete anyone set of sections from the customized FCOM.

AIRBUS TRAINING A320	TAKEOFF	2.02.10	P 1
FLIGHT CREW OPERATING MANUAL	GENERAL (TEMPERATURE ENTRY)	SEQ 001	REV 22


TAKEOFF PERFORMANCE

Takeoff optimization is calculated for a given runway and its obstacles and for given conditions of flap setting, temperature, wind and QNH. The calculation produces a maximum permissible takeoff weight (or a maximum takeoff temperature for an actual weight).

The takeoff thrust produced by the engine varies as follows :

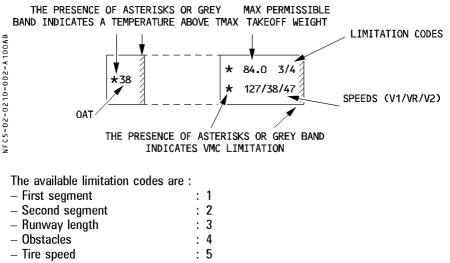
The optimization process calculates the speeds which will produce the maximum takeoff weight. To do so, it takes into account the different takeoff limitations such as TOD, ASD, TOR, second segment..., as shown on the figure charts below.

On a typical runway, the performance of a twin engine aircraft, is generally limited by the one engine out operation at takeoff. The optimum V2/VS and optimum V1/VR are consequently unique.

GENERAL (TEMPERATURE ENTRY)

TAKEOFF CHART DESCRIPTION

The takeoff chart (RTOW : Regulatory Takeoff Weight) is calculated for a specific aircraft version and for a particular runway specified at the top of the chart. The top of the chart also gives some information about the runway and lists the calculation assumptions. The chart is given for 2 different configurations and 5 wind values per configuration. This


allows the crew to select the configuration that gives either :

the highest permissible takeoff weight, or, for a given weight,

- the highest flexible temperature.

If different configurations give equivalent performance, the crew should select the configuration associated with the lowest takeoff speeds.

For each temperature value (and for a given configuration and wind), the chart provides the following information :

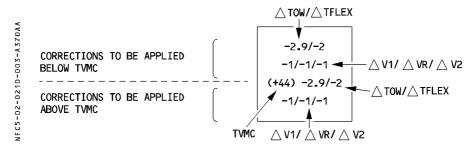
- Brake energy : 6 - Maximum computation weight : 7 Final takeoff : 8 – VMU : 9

CORRECTIONS DUE TO DIFFERENT TAKEOFF CONDITIONS

Each takeoff chart is computed for a given set of conditions (air conditioning, QNH, anti ice...) specified at the top of the chart. If the actual takeoff conditions are different, the crew must apply corrections. Two types of corrections are available :

- Conservative corrections on 2.02.24 p 1 (to be used when not provided on the chart).

- Corrections (less restrictive) listed on the chart, to be applied as explained below.


R

AIRBUS TRAINING A320	TAKEOFF	2.02.10	Р3
	GENERAL (TEMPERATURE ENTRY)	SEQ 370	REV 34

<u>Note</u>: If the RTOW chart is based on the CG being at 25 %, the crew can find the takeoff performance at a more forward CG by decreasing the takeoff weight by 1000 kg (2200 lb) and increasing V1, VR and V2 by 1 knot.

DESCRIPTION OF THE CORRECTIONS ON TAKEOFF CHART

The corrections are presented on 4 lines :

TVMC is a temperature value given per column. This is a fictitious value that indicates the temperature above which the speeds are close to a VMC limitation or are VMC limited.

Note : The lower two lines may be shaded on certain chart formats.

MINIMUM SPEED

Minimum V1/VR/V2 due to VMC are provided on the bottom right side of the takeoff chart. They are only applicable in case of speed corrections.

These speeds are conservative. They may be slightly higher than V1/VR/V2 displayed on the takeoff chart.

FLEX TEMPERATURE INDICATOR

On the temperature entry chart, the temperature column may display asterisks or have a gray band to indicate temperature values above TMAX and which are flex temperature.

GENERAL (TEMPERATURE ENTRY)

P 4

ADDITIONAL INFORMATION

ONE ENGINE OUT CLIMB PROCEDURE

The performance given in the chart is consistent with the flight path specified for the aircraft with one engine out and takes into account significant obstacles.

When the procedure to be followed is not the standard instrument departure, the chart describes a specific procedure (EOSID).

When the specified procedure requires a turn, except if otherwise stated on the RTOW chart, the turn should be performed with a maximum bank of 15° until the aircraft reaches 1500 feet or green dot.

The acceleration height (or altitude) ensures that the net flight path clears the highest obstacle by at least 35 feet when accelerating in level flight to green dot speed after an engine failure, in the most adverse conditions.

TAKEOFF ON A WET RUNWAY

Takeoff charts computed for wet runway with a 15 feet screen height and/or use of reverse thrust may produce, in some conditions, a maximum takeoff weight (or flexible temperature) higher than that obtained for a dry runway. It is thus mandatory to compare both charts (dry and wet) and retain the lower of the two weights (or flexible temperature) and the associated speeds determined for a wet runway.

<u>Note</u> : The crew need not compare the charts if the top of the wet runway chart specifies "DRY CHECK". (The comparison has already been inserted in the WET runway calculation).

AIRBUS TRAINING	TAKEOFF	2.02.10	Ρ5
	GENERAL (TEMPERATURE ENTRY)	SEQ 100	REV 25

RTOW CHARTS – COMPLEMENTARY INFORMATION

				TAKEOFF CONDITIONS																			MINIMUM & MAXIMUM ACC HEICHT	AND ALT.			
RUNWAY IDENTIFICATION	OCTOPUS (TAKEOFF CHART PROGRAM) VERSION & COMPLIATION	DATE				HEADWIND HEADWIND + 10.0 KT + 20.0 KT		3/4 91.1 3/4 92.3 3/4 /62 162/64/64 165/67/67	, 90.3 3/4 91.6 3/4 160/62/62 163/65/65	86.3 3/4 88.2 3/4 89.6 3/4 91.0 3/4 150/56/56 155/58/58 158/61/61 161/63/63	88.8 3/4 90.1 3/4 156/59/59 159/61/61	87 . 5 3/4 155/57/57	-\\	76.9 3/4 77.9 3/4 153/53/53 155/55	75.4 3/4 153/53/53	73 . 9 3/4 152/52/52	, 72.5 3/4 73.4 4/4 151/51/51 153/53/53	71.0 4/4 71.9 4/4 151/51/51 152/52/52	2/-1 0/+0/+0 0/+0/+0 -1/+0/+0	0+/0+/0	-1.2/-2 +0/+0/+0/+0 +1/-1/-1 2(+54)-1.2/-2(+54)-1.1/-2 +0/+0/+0 -1/+0/+0	+_3/+0 +_1/+1/+1 0+/0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+		MIN V1/VR/V2 = 120/22/28 CHECK VMU LIMITATION CORRECT. V1/VR/V2 = .1Kt/1000 Kg	MINIMUM VALUES OF V1/VR/V2	IO WHICH TAKEUFF SPEEDS MUST BE LIMITED WHEN DECREMENTS ARE APPLIED	V1/VR/V2 DECREMENTS FOR WEIGHTS BELOW THE LOWEST WEIGHT OF A COLUMN
	RUNMAY CONDITION	DEKAIE		15L 4 obstacles	CONF 2	NIM NIM	90.4 161/6⁄	87.7 3/4 89.7 3/4 154/59/59 159/62/62	88.9 3/4 157/60/60	88.2 3/4 155/58/58	87.4 3// 153/57/57	86.2 3/4 152/55/55		+ 75.7 3/4 7 150/51/51	74.3 3/4	72 . 9 3/4 150/50/50	+ 71.5 3/4 150/50/50	+ 70 1 3/4 149/49/49	0+/0+/0 0+/0+/0	0+/0+/0	-1.0/-2 0/0/0 2(+54)-1.0/-2 0/+0/+0	1+/L+/L+ +//+/L+ +//+/L+ +//+/+/+	Min acc height 784Ft Max acc height 1965Ft	MIN V1/VR/ CHECK VMU CORRECT. V	NINIM	SPEEDS DECRE	
	WIND MIND RU	NOIL	AIRPORT NAME	ion 489 FT T0RA 3000 M mp 14.c T0bA 3100 M ope .08% ASDA 3000 M		HEADWIND HEADWIND TAILWIND TAILWIND + 10.0 KT + 20.0 KT - 5.0 KT	93.0 3/4 86.4 3/4 167/69/71 151/57/57	85.8 3/4 87.8 3/4 89.8 3/4 91.2 3/4 92.3 3/4 85.7 3/4 87.7 3/4 77 3/4 149/55/57 154/57/59 154/59/59	85.0 3/4 87.0 3/4 89.1 3/4 90.5 3/4 91.6 3/4 85.0 3/4 87.0 3/4 88.9 3/4 90.3 3/4 147/54/56 152/56/58 157/58/61 160/61/63 163/65/66 147/54/54 152/57/57 157/60/60 160/62/62	84.3 3/4 145/52/52	3/4 88.8 3/4 90.1 3/4 83.5 3/4 85.5 3/4 /59 156/58/60 160/61/62 144/51/51 149/54/54	38.9 3/4 82.4 3/4 84.3 3/ 158/59/60 142/50/50 147/53/53	-\\	76.9 3/4 78.0 3/4 72.6 3/4 74.2 3/4 153/55/54 154/55 141/46/46 145/49/49	DO NOT USE FOR	IAL P	68.8 3/4 70.2 3/4 71.7 3/4 72.6 4/4 73.5 4/4 68.6 3/4 70.0 3/4 71.5 3/4 140/44/45 145/46/47 149/49/50 150/50/51 151/51/52 140/45/45 145/46/47 150/50/50	4/4 72.0 4/4 67.3 3/4 68.7 3/4 70.1 3/4 7/50 150/50/51 140/44/44 145/47/47 149/49/49	Influence OF Influence OF Influence Influence <td>0 -1/+0/+0 -1/+0/+0 0/+0/+0 NCF OF DFI TA PRESSIRF</td> <td>1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>Tref (OAT) =29 C Min acc he ON Tmax (OAT) =50 C Max acc he</td> <td>acles akeoff 9=VML</td> <td>TAKEOFF PARAMETERS</td> <td>EIGHT LIMITATION KG) CODE</td> <td>KT IAS) 150)</td>	0 -1/+0/+0 -1/+0/+0 0/+0/+0 NCF OF DFI TA PRESSIRF	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tref (OAT) =29 C Min acc he ON Tmax (OAT) =50 C Max acc he	acles akeoff 9=VML	TAKEOFF PARAMETERS	EIGHT LIMITATION KG) CODE	KT IAS) 150)
	AIRPORT CHARACTERISTICS	ENGINE TYPE		PA Elevation Isa temp Rwy slope	F 1 + F		77	.8 3/4 91.2 <u>3</u> 9/60/62 162/63/	3/4 89.1 3/4 90.5 3 5/58 157/58/61 160/61/	.3 3/4 89.7 3 5/57/59 158/59/	87.4 3/4 88.8 3 153/57/59 156/58/	22	-\\	9 3/4 76 9 3 0/50/51 153/53/			7 3/4 72.6 / 9/49/50 150/50/	70.2 3/4 71.1 4/4 148/48/49 149/49/50	IV+LUENCE	1/+0/+0 0/+0/+0	1.4/-3 /-1/-1 4)-1/-1/- 4)-1.4/-3 /+0/+0 -1/+0/-	- D/+0 + - D/+0 + - D/+0 + - D/+0 +	Codes *VMC Tref (T) *LIMITATION Tmax	ODES: :=Znd segment 3=rur :brake energy 7=max	TA	MAX WEIGHT (1000 KG)	(72.0) V1 (KT IAS) – V _F (150)
4 100AB	A CHARA	TAKEOFF CONFIGURATION	ENGINE	1013 HPA AC OFF AI OFF	CONF	TAILWIND TAILWIND - 10.0 KT - 5.0 KT	88.5 3/4 90. 8 156/59/61 16	3/4 87.8 3/4 89.8 /57 154/57/59 159/6	4 87.0 3/4 89. 5 152/56/58 15	86.3 3/4 150/55/58	85.4 3/4 149/55/57	84.2 3/4 147/54/56		4 74.3 3/4 75.9 3/4 145/48/49 150/50/51	71.4 3/4 73.0 3/4 74.5 3/4 141/45/46 145/47/48 149/50/51	70.1 3/4 71.6 3/4 73.1 3/4 140/44/46 145/47/48 149/49/50	+ 70.2 3/4 71. 5 145/46/47 149	4 68.9 3/4 70.2 145/46/47 148/4	0+/0+/1-		9/-2 9/-2 0/-1/-1 (+54)9/-2	+ 6/+0 +1/+0/+0 +1/+0/+0 +1/+0/+0 +1/+0/+0	MTOW(1000 KG) codes V1min/VR/V2(KT)	LIMITATION CODES: 1=1st segment 2=2nd sv 5=tire speed 6=brake v	RECTION	FLEX \∆V2 HT ∆TFLEX	
NFC5-02-0210-005-A100AB		AIRCRAFT MODEL CONF	AXXXXX	QNH Air conditioning Anti-icing	F#C	°C TAILWIN	-20 86.5 3/4 151/56/58	-10 85.8 3/4 149/55/57	0 85.0 3/4 147/54/56	10 84.2 3/4 145/53/56	20 83.3 3/4 144/53/55	30 82.1 3/4 143/52/54		46 72.8 3/4	48 71.4 3/4	50 70.1 3/4 50 140/44/46	+52 68.8 3/4 140/44/45	*54 67.4 3/4	HFT 0/+0	đ	-10 -1/-1 0/-1/-1 (+54)- 8/-2 0/+0/+0	+/10 +//+/ +//+0/+0 +/2-+(2+) +/2-+(2+) +/2-+0 +1/+0/+0	LABEL FOR INFLLENCE DM (1000 KG) DTFLEX DM/T-MA-M2 (KT)	(TWC OAT C) DM (1000 KG) DTFLEX DV1-DVR-DV2 (KT)		\[\Delta \ \Delta \ \Del	

AIRBUS TRAINING A320

SIMULATOR

FLIGHT CREW OPERATING MANUAL

(((

TAKEOFF

GENERAL (TEMPERATURE ENTRY)

2.02.10

SEQ 270 **REV 34**

Ρ6

R

									VEDOLOTI	D 4
	OXXX	ENG				T NAME		4 - 1	VERSION	DATE
QNH		1013.25 H	IPA	Elevation	489 FT	TORA	3000 M	15L	AXXXXXX	X **V20
Air conc	l.	AC OFF		lsa temp	14 C	TODA	3000 M			
Anti-icin	g	AI OFF		rwy slope	.08 %	ASDA	3000 M	4 obstacles		
All rever	sers opera	atina		, .					DRY	
	rsers on d	0								
OAT		iy iuniway	CONF 1+F					CONF 2		
UAI										
С	TAILWIND -10 KT	TAILWIND -5 KT	WIND 0 KT	HEADWIND 10 KT	HEADWIND 20 KT	TAILWIND -10 KT	TAILWIND -5 KT	WIND 0 KT	HEADWIND 10 KT	HEADWIND 20 KT
-20	80.2 4/6	82.0 4/6	83.6 3/4	84.8 3/4	85.8 3/4	80.4 4/6	81.9 3/4	83.4 3/4	84.4 3/4	85.2 2/4
-20	156/56/58	162/62/64	167/67/69	170/70/72	173/73/75	154/54/59	159/59/64	164/64/69	167/67/72	169/69/74
-10	79.5 4/6	81.3 4/6	83.1 4/6	84.3 3/4	85.3 3/4	79.7 4/6	81.4 4/6	82.9 3/4	84.0 3/4	84.9 3/4
	153/56/58 78.8 4/6	159/59/62 80.6 4/6	164/64/66 82.5 4/6	167/67/69 83.7 3/4	171/71/72 84.7 3/4	151/52/57 79.0 4/6	156/56/62 80.8 4/6	161/61/66 82.4 3/4	164/64/69 83.5 3/4	167/67/72 84.5 3/4
0	151/54/57	156/57/59	162/62/64	165/65/67	168/68/70	149/51/56	154/54/60	159/59/64	162/62/67	165/65/70
10	78.2 4/6	80.0 4/6	81.8 4/6	83.1 4/6	84.2 3/4	78.4 4/6	80.2 4/6	81.9 3/4	83.0 3/4	83.9 3/4
	148/53/55	154/57/59	159/60/62	163/63/65	166/66/67	147/50/54	152/52/58	156/56/62	159/59/65	162/63/68
20	77.6 4/6 146/51/53	79.3 4/6 151/55/57	81.1 4/6 157/57/60	82.5 4/6 160/60/62	83.6 4/6 163/63/65	77.7 4/6 145/48/52	79.5 4/6 150/51/56	81.3 4/6 154/54/60	82.4 3/4 157/57/63	83.4 3/4 160/61/66
30	76.9 4/6	78.7 4/6	80.5 4/6	81.8 4/6	83.0 4/6	77.1 4/6	78.9 4/6	80.7 4/6	81.9 3/4	82.9 3/4
	144/50/52	149/54/56	154/57/60	158/58/60	161/61/63	143/46/50	148/50/55	153/53/58	155/56/61	158/59/64
32	76.8 4/6 144/50/52	78.6 4/6 149/53/55	80.4 4/6 154/56/58	81.7 4/6 157/58/60	82.9 4/6 161/61/63	77.0 4/6 142/45/50	78.7 4/6 147/50/55	80.6 4/6 152/53/58	81.8 4/6 155/55/60	82.8 3/4 157/59/64
24	76.7 4/6	78.4 4/6	80.2 4/6	81.5 4/6	82.8 4/6	76.9 4/6	78.6 4/6	80.5 4/6	81.7 4/6	82.7 3/4
34	143/50/52	148/53/55	154/56/58	157/57/60	160/60/62	142/45/50	147/50/55	152/52/57	154/55/60	157/58/64
36	76.6 4/6	78.4 4/6	80.1 4/6	81.4 4/6	82.7 4/6	76.8 4/6	78.5 4/6	80.3 4/6	81.6 4/6	82.6 3/4
	143/49/52 76.5 4/6	148/52/54 78.3 4/6	153/56/58 80.0 4/6	156/57/59 81.3 4/6	160/60/62 82.6 4/6	141/45/50 76.7 4/6	146/50/55 78.4 4/6	151/52/57 80.2 4/6	154/55/60 81.5 4/6	157/58/63 82.5 3/4
38	142/49/52	147/52/54	153/56/58	156/58/60	159/60/62	141/45/50	146/48/53	00.2 4/0 151/52/57	154/54/59	156/58/63
40	76.4 4/6	78.2 4/6	79.9 4/6	81.2 4/6	82.5 4/6	76.6 4/6	78.3 4/6	80.1 4/6	81.4 4/6	82.4 3/4
40	142/49/52	147/52/54	152/56/58	156/58/60	159/59/61	141/45/50	146/48/53	150/51/56	153/54/59	156/57/63
42	76.3 4/6 142/49/51	78.0 4/6 147/52/54		П	O NOT	USE EC	IR		81.3 4/6 153/54/59	82.3 3/4 156/57/62
4.4	76.1 4/6	77.9 4/6			ATION				81.1 4/6	82.1 3/4
44	142/49/51	146/51/53							153/53/58	155/57/62
46	75.5 4/6	77.2 4/6	78.9 4/6	80.2 4/6	80.7 2/4	75.7 4/6	77.3 4/6	79.1 4/6	80.3 3/4	80.7 2/4
10	142/48/51 74.5 4/6	147/51/53 76.2 4/6	152/55/57 77.9 4/6	155/56/58 79.1 4/6	154/56/58 79.3 2/4	141/45/49 74.7 4/6	145/47/52 76.4 4/6	150/50/55 78.0 3/4	152/53/58 79.1 3/4	152/55/60 79.5 4/8
48	143/48/50	148/50/52	153/53/55	155/56/57	153/55/57	141/44/48	146/47/51	150/50/55	152/53/57	155/58/63
50	73.6 4/6	75.3 4/6	76.9 4/6	77.9 4/8	77.9 2/4	73.8 4/6	75.4 4/6	76.9 3/4	78.0 3/4	78.0 2/4
	143/47/49	148/49/51 74.4 4/6	153/53/55	154/54/56	151/54/55	142/42/46	146/47/51 74.3 3/4	150/50/54	152/52/57	149/52/57
52	72.7 4/6 144/46/48	74.4 4/6 149/49/51	75.8 3/4 153/53/54	76.3 2/4 152/52/53	76.3 2/4 147/52/53	72.9 4/6 142/44/48	74.3 3/4 146/46/50	75.8 3/4 150/50/54	76.4 2/4 150/50/55	76.4 2/4 146/50/55
54	71.8 4/6	73.3 3/4	74.8 3/4	75.0 2/4	75.0 2/4	71.9 3/4	73.3 3/4	74.7 3/4	75.1 2/4	75.1 2/4
J4	145/46/47	149/49/51	152/52/54	150/50/52	145/50/52	142/43/47	146/46/50	149/49/54	148/49/54	144/49/54
WET	-2.0/ -5	-1.5/ -4	-1.2/-3	INFLUENC -1.1/-2	<u>e of Runway</u> _1.8/ -2	<u>-0.9/-4</u>	-1.5/ -4	-1.2/ -3	-1.2/ -2	-1.5/ -3
	-169/ -1/-1	-15/-2/-2	-13/ -4/ -4	-11/-3/-3	-10/-2/-2	-14/0/	-13/0/	-12/-2/-2	-10/-1/-1	-4/-2/-2
	(+54) -2.0/ -5	(+54) -1.5/ -4	(+54) -1.3/-3	(+54) -1.1/ -2	(+54) -0.8/ -2	(+54) -0.9/ -4				(+54) -1.5/ -3
D QNH HPA	-16/0/0	-15/0/ 0	-13/ 0/0	<u> </u>	-10/0/0 NFLUENCE OF D	-14/ 0/0 ELTA PRESSUR	<u> </u>	-11/ 0/0	-10/ 0/0	-4/ 0/0
-10.0	-0.8/ -2	-0.7/ -2	-0.7/ -2	-1.3/-3	-0.7/-2	-0.7/ -2	-1.2/-3	-0.8/ -2	-0.8/ -2	-0.8/ -2
	0/0/	0/0/	0/0/	-1/0/	0/0/	0/0/	0/0/	-1/-1/-2	-1/0/	-1/-1/-1
	(+54) -0.8/ -2 0/ 0/	(+54) -0.7/ -2 0/ 0/	(+54) -0.// -2 0/ 0/	(+54) -1.3/ -3 -1/ 0/	(+54) -0.7/ -2 0/ 0/	(+54) -0.7/ -2 0/ 0/	(+54) -1.2/ -3 0/ 0/	(+54) -0.8/ -2 -1/ 0/	(+54) -0.8/ -2 -1/ 0/	(+54) -0.8/ -2 -1/ 0/
+ 10.0	+0.2/ 0	+0.2/ 0	0.0/ 0	+0.2/ 0	+0.2/ 0	+0.2/ 0	+0.2/0	+0.2/0	+0.2/ 0	+0.2/ 0
	0/0/	0/0/	0/0/	0/0/	+1/+1/+1	0/+1/+1	0/0/	0/0/	+1/+1/+1	+1/+1/+1
	(+54) +0.2/ 0 0/ 0/	(+54) +0.2/ 0 0/ 0/	(+54) 0.0/ 0 0/ 0/	(+54) +0.2/ 0 0/ 0/	(+54) +0.2/0 +1/ +1/ +1	(+54) +0.2/0 0/ +1/ +1	(+54) +0.2/0 0/0/	(+54) +0.2/ 0 0/ 0/	(+54) +0.2/0 +1/+1/+1	(+54) +0.2/ 0 +1/ +1/ +1
LABEL FOR II	VFLUENCE	MTOW(1000 KG) codes	* VMC	Tref (OAT)	= 44 C	Min acc height	464 FT	Min QNH alt 95	3 FT
DW (1000 K0 DV1-DVR-DV2		V1min/VR/V2 (kt LIMITATION COE		*LIMITATION	Tmax (OAT)	= 54 C	Max acc height	1917 FT Min V1/VR/V2 =	Max ONH alt 24	06 FT
(TVMC OAT (3=runway lengt	th 4=obstacles			CHECK VMU LIN		
DW (1000 K0	G) DTFLEX			=max weight 8=		VMU			/2 = 1.0 KT/100) KG
DV1-DVR-DV2	? (KT)									

P 1

MANUAL MTOW CALCULATION (TEMP. ENTRY)

DETERMINATION OF MAXIMUM TAKEOFF WEIGHT AND SPEEDS

DIRECT CHART READING

The takeoff chart is computed for a given runway under a set of conditions, which are : $-\ \mbox{OAT}$

- UAT – Wind
- vvina
 Configuration
- Configuration
- QNH, air conditioning, anti ice...

Two configurations are produced on the chart. This enables the crew to select that giving the highest permissible takeoff weight. In case of equivalent performance, retain the configuration giving the lower takeoff speeds.

For a given configuration, enter the chart with the OAT and wind value to determine the maximum permissible weight. For an OAT or wind value not presented on the chart, interpolate between two consecutive temperature rows and/or two consecutive wind columns. Conservative OAT or wind values can also be considered. No extrapolation is allowed.

CORRECTIONS DUE TO DIFFERENT TAKEOFF CONDITIONS

Retain the maximum takeoff weight, associated configuration and speeds from above. For conditions different from those of the chart, apply relevant corrections.

CONSERVATIVE CORRECTIONS FOR QNH AND BLEEDS FROM FCOM 2.02.24 p 1

Corrections are given for QNH \neq 1013 hPa, air conditioning ON, anti ice ON.

- 1. For the given wind and temperature conditions, read the maximum takeoff weight (choose the configuration giving the highest weight).
- 2. Apply the published weight correction(s) to the maximum takeoff weight (for each correction) to determine the maximum permissible takeoff weight.
- 3. Read the speeds associated with the maximum permissible takeoff weight by entering the chart with the retained configuration and wind value.

Example 1 DATA : OA

ATA	:	OAT	=	25°C	
		Head Wind	=	10 kt	
		Air conditioning ON	l I		
		QNH	=	1013 hPa	
		1	~		

Use the chart from 2.02.10 p 6.

	Enter the 10 kt head wind column and interpolate for 25° C, CONF 1+F,
R	Maximum takeoff weight (1000 kg) air conditioning OFF

- Enter the 10 kt head wind column and interpolate for 25°C, CONF 2,

AIRBUS TRAINING A320	TAKEOFF	2.02.12	P 2
SIMULATOR FLIGHT CREW OPERATING MANUAL	MTOW CALCULATION (TEMP. ENTRY)	SEQ 280	REV 37

Retain CONF 2 as takeoff configuration.

CORRECTIONS FOR WET OR CONTAMINATED RUNWAYS FROM FCOM 2.04.10

(Refer to FCOM 2.04.10)

CORRECTIONS PRODUCED ON THE RTOW CHART (SEE EXAMPLE ON 2.02.10 P 6)

A description of this correction is given on 2.02.10 p 3. The list of corrections is not exhaustive, however the most commonly used corrections are wet runway, QNH, air conditioning and/or anti ice. A maximum of three corrections can be produced on one chart.

To apply the corrections, proceed as follows :

- 1. Enter the chart with given OAT and wind to determine the maximum takeoff weight before correction.
- 2. Apply the first correction : If OAT is less than or equal to TVMC (line 3), apply \triangle W correction from line 1 and \triangle V1/ \triangle VR/ \triangle V2 corrections from line 2. Else, (for OAT greater than TV/MC), apply \triangle W correction from line 3 and \triangle V1/ \triangle VR/ \triangle V2

Else, (for OAT greater than TVMC), apply $\triangle W$ correction from line 3 and $\triangle V1/\triangle VR/\triangle V2$ corrections from line 4.

3. To combine a second (and third, as applicable) correction :

If OAT is less than or equal to TVMC (line 3), apply $\triangle W$ correction from line 1 and $\triangle V1/\triangle VR/\triangle V2$ corrections from line 2.

Check that the resulting speeds are higher than the minimum speeds displayed on the RTOW chart and that V2 is higher than the VMU limited speed (FCOM 2.02.25).

If OAT is higher than TVMC (line 3) or if the above speed check is not fulfilled, apply $\triangle W$ correction from line 3 and $\triangle V1/\triangle VR/\triangle V2$ corrections from line 4. No speed check is required.

- <u>Note</u> : <u>QNH</u> correction is given for \pm 10 hPa. It is allowed to extrapolate linearly for greater QNH deviation.
 - When using a takeoff chart with failure cases, it is not allowed to combine two failure cases.
 - Corrections from the chart must be applied from top to bottom, i.e. in the RTOW on 2.02.10 p 6, apply the wet correction first.
 - If asterisk or dotted lines appear in the correction boxes, refer to more conservative corrections provided in the FCOM.
 - No speed check is required for the first correction. However, if the first influence correction follows a conservative FCOM correction, a speed check is required.

AI	RBUS TRAINING	т	AKEOFF		2.02.1	2	Р 3	
	A 320		AREUFF		2.02.1	2	13	
FL	SIMULATOR	MTOW CALCUL	ation (temp. en	ITRY)	SEQ 27	70	REV 37	
	Example 2							
	DATA : OAT	= 25°C						
	Head wind							
	QNH	= 1028 hPa						
	WET runway							
	Use the chart from 2.0							
_	Enter the 10 kt head							
R	max TO weight (100					• •	82.1	
_	• Enter the 10 kt head							
R	max TO weight (100					• •	82.1	
	· Retain CONF 2 for ta							
	· Read associated spe		kt, VR = 157 kt	, V2 =	162 kt			
_	Apply WET correctio							
R	For OAT $<$ TVMC (5							
R	Intermediate weight	(1000 kg)					80.9	
_	Associated speeds,							
R	V1 = 156 kt - 10 =							
R	VR = 157 kt – 1 =							
R	V2 = 162 kt − 1 =							
	(No speed check req		ection)					
	 Apply QNH correction 							
	For OAT $<$ TVMC (5							
R	Maximum permissibl	e takeoff weight (1000 kg)				81.2	
	Associated speeds,							
R	$V1 = 146 \text{ kt} + 1 \times$							
R	$VR = 156 \text{ kt} + 1 \times$							
R	$V2 = 161 \text{ kt} + 1 \times$							
	· Check that the speeds are higher than minimum speeds from the chart and from VMU							
	table.							
R								
			Takeoff Confi	guratior	ı:2			
		тоw	V1	v	′R		V2	

	Takeoff Configuration : 2							
	TOW	V1	VR	V2				
TOW (RTOW)	82.1	156	157	162				
FCOM correction(s)								
Intermediate value	82.1	156	157	162				
WET Correction	– 1.2	- 10	– 1	– 1				
Intermediate value	80.9	146	156	161				
QNH Correction	+ 0.3	+ 1	+ 2	+ 2				
Final value	81.2	147	158	163				

AIRBUS TRAINING A320	TAKEOFF	2.02.12	P 4
FLIGHT CREW OPERATING MANUAL	MTOW CALCULATION (TEMP. ENTRY)	SEQ 280	REV 37

COMBINING CORRECTIONS FROM FCOM AND CHART

Proceed as follows :

- 1. Enter the chart with selected configuration, OAT and wind to read the maximum takeoff weight.
- 2. Apply corrections from FCOM to determine an intermediate weight. Interpolate associated speeds for intermediate weight in the same column (same wind and configuration).
- 3. Apply corrections from RTOW chart as explained above.

Example 3

	$DATA : OAT = 25^{\circ}C$
	Head wind $=$ 10 kt
	Air conditioning ON
	QNH = 1028 hPa
	WET runway
	1. Use the chart from 2.02.10 p 6.
	Enter the 10 kt head wind column and interpolate for 25°C, CONF 1+F,
R	Max TO weight (1000 kg) air conditioning OFF
	Enter the 10 kt head wind column and interpolate for 25°C, CONF 2,
R	Max TO weight (1000 kg) air conditioning OFF
	Retain CONF 2 for takeoff configuration.
	2. First, apply the correction from FCOM page 2.02.24 p 1.
R	Max TO weight (1000 kg) air conditioning OFF
	Air conditioning correction
R	Intermediate weight
R	Interpolate takeoff speeds for 79.9 (1000 kg) in the 10 kt head wind column,
	V1 = 152 kt, $VR = 153$ kt, $V2 = 158$ kt
_	3. Apply WET correction
R	For OAT < TVMC (54°C), $\triangle W = \dots - 1.2$
R	Intermediate weight
-	Associated speeds,
R	V1 = 152 kt - 10 = 142 kt
	VR = 153 kt - 1 = 152 kt
	V2 = 158 kt - 1 = 157 kt
	Check that the speeds are higher than minimum speeds from the chart and from
	Apply QNH correction
п	For OAT < TVMC (54°C), $\triangle W = 0.2 \times 15/10 = \dots + 0.3$
R	Maximum permissible takeoff weight
R	$V1 = 142 \text{ kt} + 1 \times 15/10 = 143 \text{ kt}$
n R	$VI = 142 \text{ kt} + 1 \times 15/10 = 143 \text{ kt}$ $VR = 152 \text{ kt} + 1 \times 15/10 = 154 \text{ kt}$
n R	$V1 = 152 \text{ kt} + 1 \times 15/10 = 154 \text{ kt}$ $V2 = 157 \text{ kt} + 1 \times 15/10 = 159 \text{ kt}$
п	$VL = 137 \text{ KL} + 1 \times 13/10 = 133 \text{ KL}$

AIRBUS TRAINING A320	TAKEOFF	2.02.12	Ρ5
FLIGHT CREW OPERATING MANUAL	MTOW CALCULATION (TEMP. ENTRY)	SEQ 280	REV 37

Check that the speeds are higher than minimum speeds from the chart and from VMU table. (It is reminded that if the speed checks are not fulfilled, the corrections must be recalculated using those provided on lines 3 and 4).

Since the speed check is fulfilled :

R Max permissible takeoff weight = 79.0 (1000 kg)

R V1 = 143 kt, VR = 154 kt, V2 = 159 kt.

R

	Takeoff Configuration : 2							
	TOW	V1	VR	V2				
TOW (RTOW)	82.1							
FCOM correction(s)	- 2.2							
Intermediate value	79.9	152	153	158				
WET Correction	– 1.2	- 10	– 1	– 1				
Intermediate value	78.7	142	152	157				
QNH Correction	+ 0.3	+ 1	+ 2	+ 2				
Final value	79.0	143	154	159				

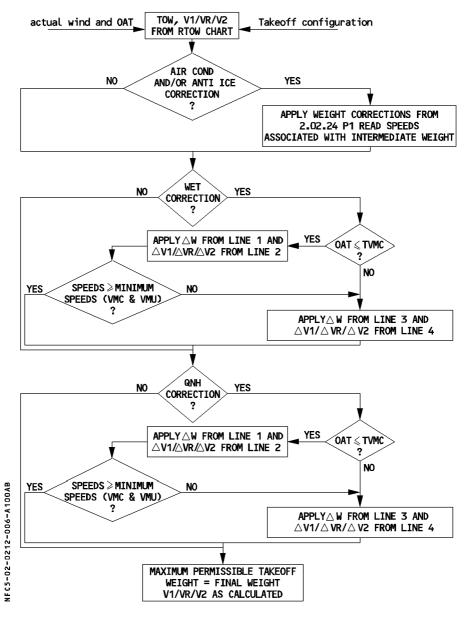
EXTRAPOLATION

For a takeoff weight lower than those displayed on the chart, associated speeds are calculated as follows :

- 1. For given configuration and wind, note the speeds associated with the takeoff weight in the row displaying the highest permissible temperature.
- 2. Apply speed corrections provided at the bottom of the RTOW chart to V1, VR and V2 limited to the minimum speeds.

MAXIMUM STRUCTURAL TAKEOFF WEIGHT

The maximum structural takeoff weight is a weight limitation depending on the aircraft. This limitation is provided in the Flight Manual and in the chapter limitation of the FCOM3. Compare the maximum structural takeoff weight to the maximum permissible takeoff weight computed for given conditions and retain the lower of the two values.


AIRBUS TRAINING	
A320	
SIMULATOR	
FLIGHT CREW OPERATING	MANUA

MTOW CALCULATION (TEMP. ENTRY)

P 6

SUMMARY

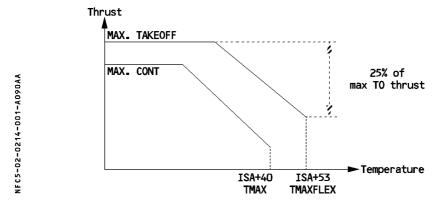
The following flow diagram gives the different steps to follow.

FLEXIBLE TAKEOFF (TEMP. ENTRY)

DEFINITION OF FLEXIBLE TAKEOFF

In many cases, the aircraft takes off with a weight lower than the maximum permissible takeoff weight. When this happens, it can meet the required performance (runway, second segment, obstacle....) with a decreased thrust that is adapted to the weight : this is called FLEXIBLE TAKEOFF and the thrust is called FLEXIBLE TAKEOFF THRUST. The use of flexible takeoff thrust saves engine life.

USE OF FLEXIBLE TAKEOFF


The pilot can use flexible takeoff when the actual takeoff weight is lower than the maximum permissible takeoff weight for the actual temperature. The maximum permissible takeoff weight decreases when temperature increases, so it is possible to assume a temperature at which the actual takeoff weight would be the limiting one. This temperature is called FLEXIBLE TEMPERATURE or assumed temperature and is entered in the FADEC via the MCDU PERF TO page in order to get the adapted thrust.

REQUIREMENTS

- Thrust must not be reduced by more than 25 % of the full rated takeoff thrust.
- The flexible takeoff N1 cannot be lower than the Max Climb N1 at the same flight conditions.

The FADEC takes the above two constraints into account to determine flexible N1. The above two constraints also limit the maximum flexible temperature at ISA + 53 (68°C at sea level).

- The flexible takeoff thrust cannot be lower than the Max Continuous thrust used for the final takeoff flight path computation (at ISA + 40).
- R - The flexible temperature cannot be lower than the flat rating temperature, TREF* (ISA
 - + 29 up to 2000 feet), or the actual temperature (OAT).

R Note : *TREF being a function of pressure altitude, read it on the takeoff chart.

R

AIRBUS TRAINING
A320
SIMULATOR
FLIGHT CREW OPERATING MANUAL

- Flexible takeoff is not permitted on contaminated runways.
- The operator should check the maximum thrust (TOGA) at regular intervals in order to detect any engine deterioration, or maintain an adequate engine performance monitoring program to follow up the engine parameters.

RECOMMENDATION

- - \cdot However, to improve the takeoff performance, the thrust can be increased by selecting a lower flexible temperature.

Using the same takeoff chart, for a given weight it is possible to :

- Select a temperature lower than the maximum determined one and keep the speeds defined at maximum temperature or,
- Move towards the left side (tailwind) of the takeoff chart while remaining within the same configuration and looking for the same actual takeoff weight at lower temperature. This produces a lower flexible temperature and, in general, lower takeoff speeds (V1/VR/V2).

Using one of the two above possibilities, check that the selected temperature is greater than the actual temperature (OAT) and greater than the flat rating temperature (TREF).

TAKEOFF PROCEDURE

Depending on environmental takeoff conditions, the following procedure is recommended.

R

CONDITIONS	PROCEDURE	REASON
Dry or wet well paved runway	 Use the flap setting giving the highest flexible temperature. When flexible temperature difference between two flap settings is low, use the highest flap setting. 	Extend engine life and save maintenance costs.
High altitude takeoff	— Use CONF2/CONF3	Improve comfort
Badly paved runway or Accelerate stop distance limited runway	 Use CONF2/CONF3 or Move towards left side of the takeoff chart 	Improve comfort Improve stopping distance
Windshear expected along takeoff path	— Use maximum thrust	Maintain acceleration capability
Contaminated runway	 Use maximum thrust (flex forbidden) 	Improve stopping distance Decrease time on runway. Required by regulations.

2.02.14

FLEXIBLE TAKEOFF (TEMP. ENTRY)

P 3

DETERMINATION OF FLEXIBLE TAKEOFF TEMPERATURE AND SPEEDS

Before determining the flexible temperature, calculate the maximum permissible takeoff weight (see previous section) and ensure that the actual takeoff weight is lower than the determined maximum takeoff weight.

- Enter the RTOW chart with the wind condition and selected configuration to interpolate for the actual takeoff weight. Read the flexible temperature in the temperature column corresponding to the actual weight.
- Repeat this process for the other configuration available. Select that configuration giving the highest flexible temperature.

CORRECTIONS DUE TO DIFFERENT TAKEOFF CONDITIONS

When the takeoff conditions are different from those provided on the chart, apply the associated corrections.

<u>Note</u> : If the RTOW chart is based on the CG being at 25 %, the crew can determine the flexible temperature at a more forward CG by decreasing the flexible temperature by 2°C. V1, VR and V2 must be increased by 1 knot.

CONSERVATIVE CORRECTIONS FOR QNH AND BLEEDS FROM FCOM 2.02.24 P 1

Corrections are given for QNH \neq 1013 hPa, air conditioning ON, anti ice ON.

- 1. For a given takeoff weight, wind condition and selected configuration, determine the flexible temperature. Retain the takeoff speeds associated with the actual weight.
- Apply the published temperature correction. To combine two or more corrections, add the different corrections and apply to temperature value. (No speed corrections required).

Example 2

DATA : Actual takeoff weight = 76 000 kg Head wind = 10 kt Air conditioning ON QNH = 1013 hPa

Use the chart from 2.02.10 p 6. Determine the maximum permissible takeoff weight (see example1). The actual weight being lower than the maximum one, flexible takeoff is possible.

Enter the 10 kt head wind column and interpolate for 76 000 kg, CONF 1 $+$ F,
Flexible temperature
Enter the 10 kt head wind column and interpolate for 76 000 kg, CONF 2,
Flexible temperature

AIRBUS TRAINING A320	TAKEOFF	2.02.14	Р
	Flexible Takeoff (Temp. Entry)	SEQ 280	REV

Retain CONF 2 for takeoff configuration.
Takeoff speeds are V1 $=$ 150 kt, VR $=$ 150 kt, V2 $=$ 155 kt
Flexible temperature with air conditioning OFF
Air conditioning correction (FCOM 2.02.24 p 1)
Maximum flexible temperature

4

34

CORRECTIONS FOR WET RUNWAY FROM FCOM 2.04.10

(Refer to FCOM 2.04.10)

.

CORRECTIONS PRODUCED ON THE RTOW CHART (SEE EXAMPLE ON 2.02.10 P 6)

A description of this correction is given on 2.02.10 p 3. The list of corrections is not exhaustive, however the most commonly used corrections are wet runway, QNH, air conditioning and/or anti-icing. A maximum of three corrections can be produced on one chart.

To apply the correction, proceed as follows :

- 1. Enter the chart with wind and selected configuration. Interpolate for actual takeoff weight. Read flexible temperature associated with this weight.
- 2. Apply the first correction :

If the flexible temperature is less than or equal to TVMC (line 3), apply \triangle Tflex correction from line 1 and apply speed corrections (\triangle V1/ \triangle VR/ \triangle V2) from line 2.

Else, (flexible temperature greater than TVMC), apply \triangle Tflex from line 3 and \triangle V1/ \triangle VR/ \triangle V2 corrections from line 4.

Check V2 against VMU limitation (FCOM 2.02.25). If V2 is lower than V2 limited by VMU, flexible takeoff is not possible. Set TOGA thrust and retain the speeds associated with maximum permissible takeoff weight or the speeds read in the chart of the actual weight if they are all lower.

<u>No speed correction is required for QNH and bleeds influence</u> (Not applicable to maximum takeoff weight determination).

- 3. To combine a second and/or a third correction, proceed as per point 2.
- 4. Check that the final flexible temperature is :
 - higher than OAT and TREF
 - limited to TMAXFLEX

If the check is fulfilled, retain final flexible temperature as the one to be inserted in the MCDU.

If the check is not fulfilled, (final flexible temperature lower than OAT or TREF), no flexible takeoff is possible.

Use TOGA thrust and retain speeds that have been calculated for the maximum permissible takeoff weight. (See 2.02.14 $\rm p$ 7)

- <u>Note</u> : <u>QNH</u> correction is given for \pm 10 hPa. It is allowed to extrapolate linearly for greater QNH deviation.
 - Corrections from the chart must be applied from top to bottom, i.e. in the RTOW on 2.02.10 p 6, apply the wet influence first.

AIRBUS TRAINING A320	TAKEOFF	2.02.14	Р 5
	Flexible Takeoff (Temp. Entry)	SEQ 270	REV 40
flexible temp — If asterisk	lexible temperature is higher than TVMC, perature to TVMC and apply only correction or dotted lines appear in the correction of corrections provided in the FCOM.	ons from line	s 1 and 2.
Head wind QNH WET runway Air conditionir Use the chart from 2.0	D2.10 p 6. Determine the maximum permi		
is possible. Enter the 10 kt head v Flexible temperature Enter the 10 kt head v Flexible temperature Equivalent performance Retain CONF 2 as the	actual weight being lower than the maxin wind column and interpolate for 76 000 kg wind column and interpolate for 76 000 kg e is obtained from the two different config speeds are lower. = 149 kt, VR = 150 kt, V2 = 155 kt), CONF 1+F 	; , 52° C
For flexible temperatur	49 kt		– 2° C 50° C
Check V2 against VMI Apply QNH correction For flex temperature < Maximum flexible tem	U limitation on FCOM 2.02.25. < TVMC (54° C), $△$ Tflex =		
	= 139 kt, VR $=$ 149 kt, V2 $=$ 154 kt		

К

	Takeoff Configuration : 2			
	Tflex	V1	VR	V2
Chart temperature	52	149	150	155
FCOM correction(s)				
Intermediate value	52	149	150	155
WET Correction	- 2	- 10	– 1	– 1
Intermediate value	50	139	149	154
QNH Correction	0	0	0	0
Final value	50	139	149	154

A320		2.02.14	P 6
SIMULATOR FLIGHT CREW OPERATING MANUAL	Flexible Takeoff (Temp. Entry)	SEQ 280	REV 34
COMBINING CORRECT	IONS FROM FCOM AND CHART		
2. Apply corrections fi	rom FCOM (see 2.02.24 p 1). rom the RTOW chart. tions except for QNH and bleed influences	5.	
Head wind Air conditioni QNH	f weight = 76 000 kg = 10 kt ng ON = 1028 hPa		
	02.10 p 6. Determine the maximum permi actual weight being lower than the maxin		
• Enter the 10 kt head Flexible temperature	wind column and interpolate for 76 000 k wind column and interpolate for 76 000 k		
 Flexible temperature			
First, apply the correct Flexible temperature Air conditioning correct Intermediate flexible No speed correction	ection from FCOM page 2.02.24 p 1. with air conditioning OFF ection temperature		7° C
Intermediate flex ten Associated speeds, V1 = 150 kt $-5 =$ VR = 150 kt $-1 =$	ure < TVMC (54° C), ∆Tflex = nperature 145 kt 149 kt		
Apply QNH correctio For flexible temperat Maximum flexible te Check that OAT/TRE No speed correction	<i>I</i> U limitation on FCOM 2.02.25. n ure < TVMC (54° C), $△$ Tflex = mperature		

2.02.14

SEQ 280

P 7

FLEXIBLE TAKEOFF (TEMP. ENTRY)

	Takeoff Configuration : $1 + F$			
	Tflex	V1	VR	V2
Chart temperature	52	150	150	155
FCOM correction(s)	- 7	0	0	0
Intermediate value	45	150	150	155
WET Correction	– 1	– 5	– 1	– 1
Intermediate value	44	145	149	154
QNH Correction	0	0	0	0
Final value	44	145	149	154

FLEXIBLE TAKEOFF NOT POSSIBLE

In some cases when the actual takeoff weight is lower than the maximum permissible one but no flexible takeoff possible (that is flexible temperature lower than TREF or OAT) :

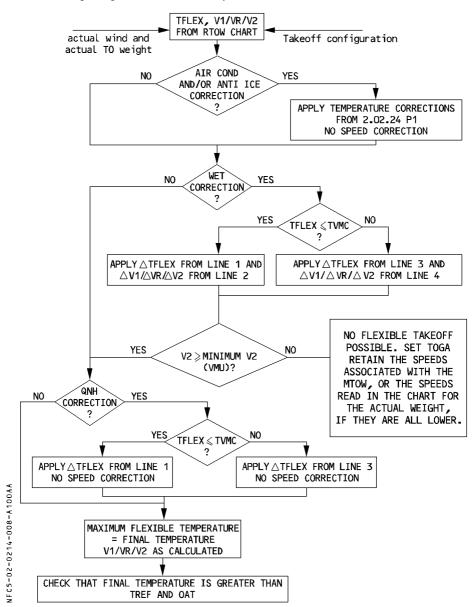
 $-\mbox{ It is mandatory to use TOGA thrust}$

 You can retain the speeds that have been calculated for the maximum permissible takeoff weight;

OR

 You can retain the speeds associated with the actual takeoff weight provided they are all lower than the speeds calculated for the maximum permissible takeoff weight.

2.02.14

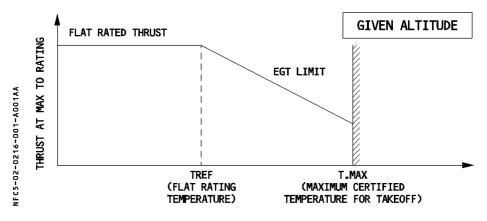

FLEXIBLE TAKEOFF (TEMP. ENTRY)

P 8

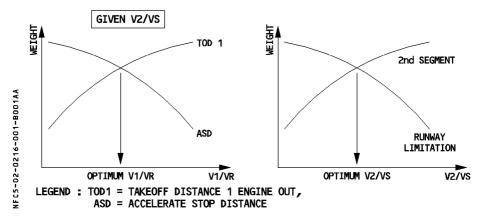
SUMMARY

R

The flow diagram gives the different steps to follow.



AIRBUS TRAINING A320	TAKEOFF	2.02.16	P 1
FLIGHT CREW OPERATING MANUAL	General (Weight Entry)	SEQ 001	REV 22


TAKEOFF PERFORMANCE

Takeoff optimization is calculated for a given runway and its obstacles and for given conditions of flap setting, temperature, wind and QNH. The calculation produces a maximum permissible takeoff weight (or a maximum takeoff temperature for an actual weight).

The takeoff thrust produced by the engine varies as follows :

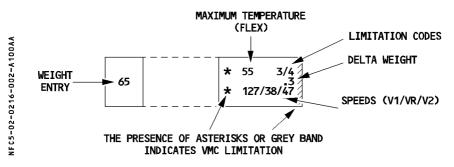
The optimization process calculates the speeds which will produce the maximum takeoff weight. To do so, it takes into account the different takeoff limitations such as TOD, ASD, TOR, second segment..., as shown on the charts below.

On a typical runway, the performance of a twin engine aircraft, is generally limited by the one engine out operation at takeoff. The optimum V2/VS and optimum V1/VR are consequently unique.

AIRBUS TRAINING	TAKEOFF	2.02.16
	GENERAL (WEIGHT ENTRY)	SEQ 100

TAKEOFF CHART DESCRIPTION

The takeoff chart (RTOW : Regulatory Takeoff Weight) is calculated for a specific aircraft version and for a particular runway specified at the top of the chart. The top of the chart also gives some information about the runway and lists the calculation assumptions.


The chart is given for 2 different configurations and 4 wind values per configuration. This allows the crew to select the configuration that gives either :

- the highest permissible takeoff weight, or, for a given weight,

- the highest flexible temperature.

If different configurations give equivalent performance, the crew should select the configuration associated with the lowest takeoff speeds.

The left column of the chart contains weight entry. For each weight entry (and for a given configuration and wind), the chart provides the following information :

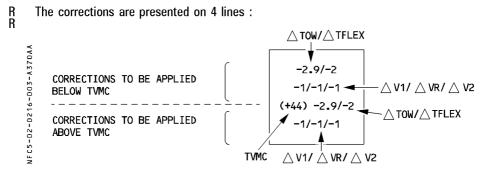
Note : The takeoff weight is the sum of the weight entry and the delta weight.

The available limitation codes are :

 First segment 	: 1
- Second segment	: 2
 Runway length 	: 3
– Obstacles	: 4
 Tire speed 	: 5
- Brake energy	: 6
 Maximum computation weight 	: 7
 Final takeoff 	: 8
– VMU	: 9

CORRECTIONS DUE TO DIFFERENT TAKEOFF CONDITIONS

Each takeoff chart is computed for a given set of conditions (air conditioning, QNH, anti ice...) specified at the top of the chart. If the actual takeoff conditions are different, the crew must apply corrections. Two types of corrections are available :


- Conservative corrections on 2.02.24 p 1 (to be used when not provided on the chart).

- Corrections (less restrictive) listed on the chart, to be applied as explained below.

AIRBUS TRAINING A320	TAKEOFF	2.02.16	Р3
	general (Weight Entry)	SEQ 370	REV 34

<u>Note</u> : If the RTOW chart is based on the CG being at 25 %, the crew can find the takeoff performance at a more forward CG by decreasing the takeoff weight by 1000 kg (2200 lb) and increasing V1, VR and V2 by 1 knot.

R DESCRIPTION OF THE CORRECTIONS ON TAKEOFF CHART

R TVMC is a temperature value given per column. This is a fictitious value that indicates the
 R temperature above which the speeds are close to a VMC limitation or are VMC limited.

R Note : The lower two lines may be shaded on certain chart formats.

R MINIMUM SPEED

- R Minimum V1/VR/V2 due to VMC are provided on the bottom right side of the takeoff chart.
- R They are only applicable in case of speed corrections.
- R These speeds are conservative. They may be slightly higher than V1/VR/V2 displayed on
- R the takeoff chart.

ADDITIONAL INFORMATION

ONE ENGINE OUT CLIMB PROCEDURE

The performance given in the chart is consistent with the flight path specified for the aircraft with one engine out and takes into account significant obstacles.

When the procedure to be followed is not the standard instrument departure, the chart describes a specific procedure (EOSID).

When the specified procedure requires a turn, except if otherwise stated on the RTOW chart, the turn should be performed with a maximum bank of 15° until the aircraft reaches 1500 feet or green dot.

The acceleration height (or altitude) ensures that the net flight path clears the highest obstacle by at least 35 feet when accelerating in level flight to green dot speed after an engine failure, in the most adverse conditions.

TAKEOFF ON A WET RUNWAY

Takeoff charts computed for wet runway with a 15 feet screen height and/or use of reverse thrust may produce, in some conditions, a maximum takeoff weight (or flexible temperature) higher than that obtained for a dry runway. It is thus mandatory to compare both charts (dry and wet) and retain the lower of the two weights (or flexible temperature) and the associated speeds determined for a wet runway.

<u>Note</u>: The crew need not compare the charts if the top of the wet runway chart specifies "DRY CHECK". (The comparison has already been inserted in the WET runway calculation).

A320	TAKEOFF	2.02.16 P 5	
SIMULATOR HT CREW OPERATING MANUAL	GENERAL (WEIGHT ENTRY)	SEQ 100 REV 37	
	TAKEOFF CONDITIONS		F GRAD1/GRAD2 MINIMUM & MAXIMUM AND ALT.
IDENTIFICATION COTOPUS CTAKEOFF CHART AY VERSION & COMPUTATION DATE DATE		152/56/58 155/56/56/56/56/56 43 3/3 44 3/3 43 5/3 44 3/3 51 3/3 44 3/3 51 3/3 5/4 3/3 51 3/3 5/4 3/3 51 3/3 5/2 12/3 51 3/3 153/54/56 5/4 51 2/3 51 2/3 6 6 6 6 149/50/51 148/50/51 148/50/51 48/50/51 49 0 *<0	
DENTILIAL DENTILIAL	NAME NAME NAME 10ka 3000 m TOBA 3100 m 4 ASbA 3000 m 4	150/25/26 120/25/26 120/25/25 40 3/3 42 3/3 40 3/3 42 3/3 48 3/3 49 3/3 48 3/3 49 3/3 48 3/3 49 3/3 142/44/6 146/48/50 5 3 56 3/3 57 3/3 5 142/43/45 147/47/48 147/47/48 2 142/34/35 3/3 57 3/3 5 58 3/7 8 58 3/7 58 3/7 58 3/7 8 58 3/7 3 5 7 3 5 7 3 5 7 3 5 3 7 5 3 7 5 3 7 5 3 7 5 3 7 5 3 7 5 3 7 5 3 7 5 7	SB 7/1 SB 7/1
	LE Levation Isa temp Ruy slope KT AII	15/1/5/1/5(1) 15/1/5/1/5(1) 44.3/3 46.3/3 44.3/3 46.3/3 150/52/55 153/54/57 52/3/3 53.3/3 52/3/5 153/53/55 53.3/5 53.3/3 149/50/52 153/53/55 58.3/7 58.3/7 58.3/7 58.3/7 0 0 140/44/46 138/44/46 58.2/7 58.2/7 58.2/7 58.3/7 0 0 140/44/46 138/44/46 58.2/7 58.2/7	111/24 * 111/24 * 111/24 0.0 0.1 * 58 0.0 0.1 * 58 0.0 0.0 * 111/2 1.10/122 * 111/2 * 111/2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
AIRPORT	ENGINE ENGINE ENGINE TO TOTAL TO TOTAL ENGINE TO TOTAL	149/55/56 42 3/3 42 3/3 50 3/3 50 3/3 50 3/3 50 3/7 145/47/49 58 3/7 58 3/7 58 3/7 50 113/30/33 *	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
-	AIRCRAFT CONFIG MODEL CONFIG MODEL CONFIG AXXXXX AXXXX AXXXXX AXXXXX AXXXXX AXXXXX AXXXXX AXXXXX AXXXXX AXXXXX AXXXXX AXXXX AXXXXX AXXXX AXXXX AXXXX AXXXX AXXXX AXXXXX AXXXXX AXXXX AXXXXXX	72 148/52/55 72 40 3/3 142/46/49 68 48 3/3 14/1/43/46 64 56 3/3 14/1/42/44 14/1/42/44 60 58 3/7 60 58 3/7 118/30/33	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

2CM ALL SIMU 1.6 up FM Honeywell for training only 2CM

AIRBUS TRAINING

AIRBUS TRAINING

(((

A320 SIMULATOR FLIGHT CREW OPERATING MANUAL

TAKEOFF GENERAL (WEIGHT ENTRY)

2.02.16

SEQ 270 **REV 34**

Ρ6

R

CNH 1013.25 HPA Elevation 489 FT TORA 3000 M 15L Axxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx										
Air cond. AC OFF Isa temp 14 C TODA 3100 M 4 Description Description <thdescription< th=""> Description <th< td=""><td>A3</td><td>20XXX</td><td>ENGINES</td><td></td><td>AIRPOR</td><td>T NAME</td><td></td><td></td><td>VERSION DATE</td></th<></thdescription<>	A3	20XXX	ENGINES		AIRPOR	T NAME			VERSION DATE	
Air cond. AC OFF All reversers operating Isa temp 14 C TODA 3100 M M No reversers on dry runway OCNF 1+ F CONF 1+ F CONF 2 DDRY WEIGHT CONF 1+ F CONF 1+ F CONF 2 CONF 2 CONF 2 No reversers on dry runway CONF 1+ F CONF 1+ F CONF 2 CONF 2 CONF 2 80 -18 4/6 9 4/6 51 37 4/6 45 4/6 -10 KT -5 KT 0 KT 0 KT 80 -18 4/6 9 4/6 51 37/4 52 4/4 4/4 48 4/5 13 4/6 4 4/6 4 4/6 4 4/6	QNH	1013.	25 HPA	Elevation	489 FT	TORA 300	0 M	151	AXXXXXXX **V20	
All reversers on dry runway UHY No reversers on dry runway CONF 1+F CONF 2 WEIGHT 1000 KG TAILWIND TAILWIND TAILWIND TAILWIND TAILWIND WIND TAILWIND TAILWIND TAILWIND WIND TAILWIND TAILWIND TAILWIND WIND TAILWIND TAILWIAL TAILWIAL TAILWIAL TAILWIAL TAILWIAL<	Air cond.	AC O	FF	lsa temp	14 C	TODA 310	0 M	IUL		
All reversers on dry runway Nor reversers on dry runway WEIGHT 1000 KG TAILWIND	Anti-icina	AI OF	F	rwy slope	.08 %	ASDA 300	0 M	4 obstacles		
No reversers on dry runway CONF 1 + F CONF 2 1000 KG TAILWVIND	All reverse	rs operating							UKY	
WEIGHT CONF 1+F CONF 2 1000 KG TAILWIND TAILWIND WIND HEADWIND TAILWIND WIND HEADWIND TAILWIND WIND HEADWIND 80 -18 4/6 9 4/6 37 4/6 45 4/6 12 4/6 40 4/6 44 4/6 44 4/6 44 4/6 44 4/6 44 4/6 4/6 51 3/4 52 2/4 44 4/6 4/6 51 3/4 52 76 4/4 4/6 4/6 51 3/4 52 2/4 4/6 4/6 51 3/4 55 72 53 4/6 56 3/4 59 3/4 60 3/4 53 3/4 65 3/4 69 3/4 60 3/4 65 3/4 69 3/4 66 3/4 69 3/4 66 3/4 69 3/4 68 3/4 69			av							
Internation Internation <thinternation< th=""> <thinternation< th=""></thinternation<></thinternation<>				1+F			CON	IF 2		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1000 KG	TAILWIND	TAILWIND	WIND	HEADWIND	TAILWIND	TAILWIND	WIND	HEADWIND	
80 -18 4/6 9 4/6 37 4/6 45 4/6 -15 4/6 12 4/6 4/4 4/6 4/6 4/6 4/6 4/6 4/6 4/6 4/6 4/6 4/6 51 53/55/56 153/55/57 155/56/56 153/55/57 155/56/56 153/55/57 155/56/56 153/55/57 155/56/56 153/55/57 155/56/56 153/55/57 155/56/56 153/55/57 155/56/56 153/55/57 155/56/56 153/55/57 155/56/56 153/55/57 155/56/56 153/55/57 <									10 KT	
0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.1 155/56/58 154/57/59 153/55/57 155/56/58 151/52/57 150/51/56 157 76 44 4/6 48 4/6 51 3/4 52 2/4 44 4/6 48 4/6 51 3/4 55 76 44 4/6 48 4/6 51 3/4 56 51 3/4 56 3/4 56 3/4 56 3/4 66 3/4 66 3/4 66 3/4 66 3/4 66 3/4 66 3/4 66 3/4 66 3/4 66 3/4 66 3/4 66 3/4 66 3/4 66 3/4 66 3/4 69 3/4 69 3/4 69 3/4 69 3/4 69 3/4 69 3/4 69 3/4 69 3/4 69 3/4 69 <	80								46 3/4	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	00								0.3	
10 0.1 0.2 0.4 0.3 0.3 0.4 0.4 0.4 141/49/51 148/50/52 153/53/55 152/52/53 140/45/49 146/47/51 150/50/54 155/57/54 72 53 4/6 56 3/4 59 3/4 60 3/4 53 3/4 56 3/4 66 3/4 53 3/4 56 3/4 66 3/4 67 3/4 61 3/4 65 3/4 66 3/4 66 3/4 66 3/4 66 3/4 68 3/4 68 3/4 68 3/4 68 3/4 68 3/4 68 3/4 68 3/4 68 3/4 68 3/4 68 3/4 68 3/4 68 3/4 68 3/4 68 3/4 68 3/4 68 3/4 68 1/4 14/4/4/4/4 14/4/4/4/4 14/4/4/4/4/4/4/4 14/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/									152/53/58	
141/49/51 148/50/52 153/53/55 152/52/53 140/45/49 146/47/51 150/50/54 151/51 72 53 4/6 56 3/4 56 3/4 56 3/4 58 3/4 66 3/4 58 3/4 66 53/4 58 3/4 56 57/4 58 3/4 66 <td>76</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>52 2/4</td>	76								52 2/4	
72 53 Å/6 56 3/4 59 3/4 60 3/4 53 3/4 56 3/4 58 3/4 66 145/46/48 148/46/50 152/52/53 154/54/55 142/43/47 146/46/50 14/4/44/55 144/44/45 144/44/45 144/44/45 144/44/45 144/44/45 144/44/45 144/44/45 144/44/45 144/44/47 151/51/52 155/53/54 142/42/45 145/45/48 148/46/52 144/44/47 1									0.4	
1/2 0.3' 0.2' 0.0' 0.4' 0.4' 0.4' 0.2' 0.5' 68 61 3/4 63 3/4 65 3/4 61 3/4 63 3/4 65 3/4 66 3/4 63 3/4 65 3/4 66 3/4 66 3/4 66 3/4 66 3/4 68 3/4 69 3/4 69 3/4 69 3/4 68 3/4 69 3/4 69 3/4 68 3/4 69 3/4 69 3/4 69 3/4 69 3/4 69 3/4 69 3/4 69 3/4 69 3/4 69 3/4 69 3/4 69 7/9 69 7/9 69 7/9 69 7/9 69 7/9 69 7/9 69 7/9 69 7/7 69 7/9 69 7/7 69 7/9 69 7/7 69 7/9	70								150/50/55 60 3/4	
145/46/48 148/48/50 152/52/53 154/54/55 142/43/47 146/46/50 149/49/53 15/5 68 61 3/4 63 3/4 65 3/4 67 3/4 61 3/4 63 3/4 65 3/4 66 3/4 66 3/4 66 3/4 68 3/4 69 7/9 69 7/9 69 7/9 69 7/9 69 7/9 69 7/7 114/2/2/2	12				/ ·				0.3	
68 61 3/4 63 3/4 65 3/4 67 3/4 61 3/4 63 3/4 65 3/4 66 0.3 0.5 0.6 0.3 0.3 0.5 0.4 144/44/45 148/48/49 151/51/52 155/53/54 142/42/45 145/45/48 148/48/52 144/48/57 64 68 3/4 69 3/4 69 3/4 69 3/4 69 3/4 69 4/4 69 143/34/44 147/47/48 151/52 155/53/54 141/41/44 141/42/44/47 147/27/50 14/ 60 69 3/4 69 7/9 69 7/9 69 7/9 69 7/9 69 7/9 69 7/9 69 7/9 69 7/9 69 7/9 69 7/9 69 7/7 69 7/7 69 7/7 69 7/7 69 7/7 69 7/7 69 7/7<									151/51/55	
0.3 0.5 0.6 0.3 0.3 0.5 0.4 64 68 3/4 69 3/4 69 3/4 68 3/4 68 3/4 68 3/4 69 3/4 69 3/4 69 3/4 68 3/4 69 3/4 68 3/4 69 3/4 68 3/4 69 3/4 68 3/4 69 3/4 68 3/4 69 3/4 69 3/4 69 3/4 69 7/9 * 69 7/9 * 69 7/9 * 69 7/9 * 69 7/9 * 69 7/9 * 69 7/9 * 69 7/9 * 69 7/9 * 69 7/9 * 69 7/9 * 69 7/9 * 69 7/9 * 69 7/9 * 69 7/9 * 69 7/7 * 69 7/7 * 69 7/7 * 69 7/7 * 69 7/7 * 69 7/7 * 69 7/7 * 69 7/7	68	61 3/4		65 3/4	67 3/4	61 3/4	63 3/4	65 3/4	66 4/4	
64 68 3/4 69 3/4 69 3/4 68 3/4 69 3/4 69 3/4 69 3/4 69 3/4 69 3/4 69 3/4 69 3/4 69 3/4 69 3/4 69 3/4 69 3/4 69 3/4 69 3/4 69 3/4 69 3/4 69 7/9 ± 69 7/9 ± 69 7/9 ± 69 7/9 ± 69 7/9 ± 69 7/9 ± 69 7/9 ± 69 7/9 ± 69 7/9 ± 69 7/9 ± 69 7/9 ± 69 7/7 ± 69 7/7 ± 69 7/7 ± 69 7/7 ± 69 7/7 ± 69 7/7 ± 69 7/7 ± 69 7/7 ± 69 7/7 ± 69 7/7		0.3							0.6	
0.5 1.1 2.2 3.0 0.6 1.0 2.0 143/43/44 147/47/48 151/5/52 153/53/54 141/41/44 144/44/47 147/47/50 147/47/50 60 69 3/4 69 7/9 69 7/7 69 7/7 69 7/7 69 7/7 69 7/7 69 7/7 69 7/7 69 7/7 69 7/7 69 7/7 69 7/7 69 7/7 69 7/7 69 7/7 69 7/7 69 7/7 69<									149/49/53	
143/43/44 147/47/48 151/51/52 153/53/54 141/41/44 144/44/77 147/47/50 147/47/50 60 69 3/4 * 69 7/9 * 69 7/7 * 69 7/7 * 69 7/7 * 69 7/7 * 69 7/7 * 69 7/7 * 69 7/7 * 69 7/7 * 69 7/7 * 69 7/7 * 69 7/7 * 69 7/7 * 69 7/7 * 69 7/7 * 69 7/7 * 69 7/7 * 69 </td <td>64</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>69 4/4 2.7</td>	64								69 4/4 2.7	
60 69 3/4 * 69 7/9 * 69 7/9 * 69 3/4 * 69 7/9 * 69 7/7 * 69 7/7 * 69 7/7 * 69 7/7 * 69 7/7 * 69 7/7 * 69 7/7 * 69 7/7 * 69 7/7 * 69 7/7 * 69 7/7 * 69 7/7 * 69 7/7 * 69 7/7 * 69 7/7 * 69 7/7 * 69 7/7 * 69 7/7 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>147/47/50</td>									147/47/50	
4.0 * 0.0 * 0.0 * 0.0 * 0.0 * 0.0 * 0.0 * 0.0 * 0.0 * 0.0 * 114/32/33 * 114/32/33 * 114/32/33 * 114/32/33 * 114/32/33 * 114/32/33 * 114/32/33 * 114/32/33 * 114/32/33 * 114/32/33 * 114/32/33 * 114/32/33 * 114/14/4 * 112/26/29 * 1112/26/29 * 1112/26/29 * 1112/26/29 * 1112/21/24 * 10.0 * 0.0 * 0.0 * 0.0 * 0.0 * 0.0 * 0.0 * 0.0 * 0.0 * 0.0 * 0.0 * 0.0 * 0.0 * 0.0 * 0.0 * 0.0 * 0.0 * 0.0 * 0.0 * 0.0 *	60								* 69 7/9	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00								* 0.0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				* 114/32/33	* 114/32/33	141/41/44	* 112/26/29		* 112/26/29	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	56		/-						* 69 7/9	
52 * 69 7/9 * 69 7/9 * 0.0 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>* 0.0</td></td<>									* 0.0	
* 0.0 * 0.0 * 0.0 * 0.0 * 0.0 * 0.0 * 0.0 * 0.0 * 0.0 * 112/19/22 * 112/19/22 * 112/19/22 * 112/19/22 * 112/19/22 * 112/19/22 * 112/19/22 * 112/19/22 * 112/19/22 * 112/19/22 * 112/19/22 * 112/19/22 * 112/19/22 * 112/19/22 * 112/19/22 * 112/19/22 * 112/19/22 * 112/19/22 * 112/19/22 * 113/18/23 * 113/18/23 * 113/18/23 * 113/18/23	F.0									
* 114/22/24 * 112/19/22 * 112/19/22 * 112/19/22 * 111/19/22 <th< td=""><td>52</td><td></td><td colspan="8">* 69 7/9 OPERATIONAL PURPOSE * 69 7/7 * 69 7/7 * 0.0</td></th<>	52		* 69 7/9 OPERATIONAL PURPOSE * 69 7/7 * 69 7/7 * 0.0							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									* 112/19/22	
* 115/20/22 * 115/20/22 * 115/20/22 * 115/20/22 * 113/18/22	48								* 69 7/7	
Init (1)									* 0.0	
50/**** 50/**** 60/460 50/**** 50/**** 60/460 50/**** 50/**** 60/**** 50/**** 60/**** 50/**** 50/**** 60/**** 50/**** 50/**** 60/**** 50/**** 60/**** 50/**** 50/**** 60/***** 50/**** <th< td=""><td></td><td>* 115/20/22</td><td>* 115/20/22</td><td>* 115/20/22</td><td>110/20/22</td><td>110/10/22</td><td>* 113/18/22</td><td>* 113/18/22</td><td>* 113/18/22</td></th<>		* 115/20/22	* 115/20/22	* 115/20/22	110/20/22	110/10/22	* 113/18/22	* 113/18/22	* 113/18/22	
INFLUENCE OF RUNWAY CONDITION WET -1.4/-3 -1.1/-3 -0.7/-2 -1.3/-3 -0.4/-1 -0.7/-2 -11/-1/-1 -0.7/-2 -1.3/-3 -0.4/-1 -0.7/-2 -11/-1/-1 -0.7/-2 -1.3/-3 -0.4/-1 -0.7/-2/-2 -5/ -11/-1/-1 -9/-2/-2 -8/-2/-2 -1.0/0 -9/-4/-4 -7/-2/-2 -5/ -11/-1/-1 -9/-2/-2 -8/-2/-2 -1.0/0 -9/-4/-4 -7/-2/-2 -5/ -11/0/0 -9/-2/-2 -8/-2/-2 -1.0/0/0 -9/-4/-4 -7/-2/-2 -5/-7/-2 -5/-7/-2 -5/-7/-2 -5/-7/-2 -5/-7/-2 -5/-7/-2 -5/-7/-2 -5/-7/-2 -0.7/-2 -0.7/-2		E0/****	E0/****	c0/****			E0/****	c0/****	50/470	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		507	50/				50/	00/	50/470	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	WET	-1.4/-3	-1.1/-3				-1.3/-3	-0.4/ -1	-0.2/ -1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-11/-1/-1	-10/-1/-1	-9/-2/-2		-10/0/0	-9/-4/-4	-7/ -2/ -2	-5/0/0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		_11/0/0	-10/0/0					-7/0/0	-5/0/0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.0/ 0	1.0(0					0.7(0	07/0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-10.0								-0.7/-2 0/0/-1	
0/ 0/ 0 0/ 0/ 0 -1/ 0/ 0 -1/ 0/ 0 0/ 0/ 0										
+10.0 +0.2/0 +0.2/0 0.0/0 +0.2/0 +1/1 +0.2/0 +0.2/0 +0.2/0 +0.2/0 +0.2/0 +0.2/0 +1/1 +0.2/0 +0.2/0 +0.2/0 +0.2/0 +0.2/0 +1/1 +0.2/0 +0.2/0 +0.2/0 +0.2/0 +0.2/0 +1/1 +0.2/0 +0.2/0 +0.2/0 +0.2/0 +0.2/0 +1/1 +0.2/0 +0.2/0 +0.2/0 +0.2/0 +0.2/0 +1/1 +0.2/0 +0.2/0 +0.2/0 +0.2/0 +0.2/0 +1/1 +0.2/0 +0.2/0 +0.2/0 +0.2/0 +1/1 +0.2/0 +1/1 +0.2/0 +0.2/0 +0.2/0 +1/1 +1/1 +0.2/0 0/0/0 0/0/0 0/0/0 0/0/0									0/0/0	
(+69) +0.2/0 (+69) +0.2/0<	+10.0								+0.2/0	
0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 + / + LABEL FOR INFLUENCE 0AT C DW CODES * VMC Tref (0AT) = 44 C Min acc height 515 FT Min 0NH alt 100		0/0/0	0/0/0	0/0/0	0/0/0	0/0/0	0/0/0	0/0/0	+1/ +1/ +1	
LABEL FOR INFLUENCE OAT C DW CODES * VMC Tref (OAT) = 44 C Min acc height 515 FT Min ONH alt 100									(+69) +0.2/0	
						0/0/0			+1/ +1/ +1	
1000 + 1000 + 50 + 10000 + 10000 + 1000 + 1000 + 1000 + 1000 + 1000 + 1000 + 1000 +						-				
DVV (1000 Kd) D1 CLX V 11111 V122 (K) ELIVITATION (1110))))))))))					[1111aX (UAI) = 54 (NFI AIL 2423 FI	
(TVMC OAT C) 1=1st segment 2=2nd segment 3=runway length 4=obstacles CHECK VMU LIMITATION					nway length 4=obs	tacles				
DW (1000 KG) DTFLEX 5=tire speed 6=brake energy 7=max weight 8=final take-off 9=VMU Correct. V1/VR/V2 = 1.0 KT/1000 KG			5=tire speed 6=br	ake energy 7=max	weight 8=final take	e-off 9=VMU	Correct. V1/VR/V2	= 1.0 KT/1000 KG		
DV1-DVR-DV2 (KT)	UV1-UVR-DV2	(KI)	L				L			

MTOW CALCULATION (WEIGHT ENTRY)

SEQ 100 | REV 25

P 1

DETERMINATION OF MAXIMUM TAKEOFF WEIGHT AND SPEEDS

GENERAL

The takeoff chart is computed for a given runway under a set of conditions, which are :

- 0AT
- Wind
- Configuration
- QNH, air conditioning, anti ice...

Two configurations are produced on the chart. This enables the crew to select that giving the highest permissible takeoff weight.

In case of equivalent performance, retain the configuration giving the lower takeoff speeds.

MTOW DETERMINATION

Enter the chart with the first configuration and actual wind column reading the temperature value. This temperature value stands for the OAT. Read the maximum takeoff weight corresponding to the actual OAT. Note that it is allowed to interpolate between two consecutive lines to obtain the maximum takeoff weight.

It is reminded that the takeoff weight is the sum of the weight entry and the delta weight. Similarly determine the takeoff speeds associated with the maximum takeoff weight.

R In some cases, it may happen that the first temperature value (displayed for the highest weight entry) is higher than OAT. In this case, it is allowed to extrapolate the weight value to avoid unnecessary penalty. Use the Grad 1/Grad 2 gradients provided at the bottom of the corresponding column.

Correction to weight

Grad 1/Grad 2 are gradients provided for both sides of the flat rating temperature (TREF). Grad 1 applies to temperatures below TREF and Grad 2 applies above TREF.

Read the lowest temperature of the column (correponding to the highest weight entry).

WEIGHT

· If the lowest temperature and OAT are above TREF.

Obtain weight increment by multiplying Grad 2 by the difference in temperature between OAT and lowest temperature. Add this weight increment to the maximum takeoff weight calculated for the lowest temperature.

TAKEOFF

2.02.18 P 2

((^;;	A320	
Y	SIMULATOR	
LIGHT	CREW OPERATING	MANUA

AIRBUS TRAINING

- If the lowest temperature and OAT are below TREF.
 Obtain weight increment by multiplying Grad 1 by the difference in temperature between OAT and lowest temperature. Add this weight increment to the maximum takeoff weight calculated for the lowest temperature.
- · If OAT is below TREF and lowest temperature is above TREF.

The weight increment is calculated in two steps. Step one is multiplying Grad 2 by temperature difference between lowest temperature and TREF. Step two is multiplying Grad 1 by temperature difference between TREF and OAT. Add results from step one and two to maximum takeoff weight calculated for lowest temperature.

- <u>Note</u>: Use the weight gradients only to extrapolate above the maximum weight shown in the RTOW chart. They are not valid for interpolation between two boxes, between filled boxes or between one filled and one blank box.
- R Repeat the above process for the other available configuration and retain the configuration giving the highest takeoff weight.

CORRECTIONS DUE TO DIFFERENT TAKEOFF CONDITIONS

R Retain the maximum takeoff weight, associated configuration and speeds from above. For conditions different from those of the chart, apply relevant corrections.

CONSERVATIVE CORRECTIONS FOR QNH AND BLEEDS FROM FCOM 2.02.24 p 1

Corrections are given for QNH \neq 1013 hPa, air conditioning ON, anti ice ON.

- 1. For the given wind and temperature conditions, determine the maximum takeoff weight
- R 1. For the given wind and temperature conditions, determ
 R (choose the configuration giving the highest weight).
 - 2. Apply the published weight correction(s) to the maximum takeoff weight (for each correction) to determine the maximum permissible takeoff weight.
 - 3. Read the speeds associated with the maximum permissible takeoff weight by entering the chart with the retained configuration and weight value.

Example A

DATA	: OAT	=	25°C
	Head Wind	=	10 kt
	Air conditioning ON		
	QNH	=	1013 hPa
llaa th	a about from 2 02 16	. 6	

Use the chart from 2.02.16 p 6.

- R Enter the 10 kt head wind column CONF 1+F, to read for $25^{\circ}C$
- R The lowest temperature of the column is 45°C, use Grad 1/Grad 2 to extrapolate the
- R maximum takeoff weight.
- R Max TO weight (1000 kg) air conditioning OFF = $80.6 + 0.46 \times 1 + 0.06 \times 19 =$
- R 82.2
- R Enter the 10 kt head wind column CONF 2, to read for 25°C
- R The lowest temperature of the column is 46°C, use Grad 1/Grad 2 to extrapolate the
- R maximum takeoff weight.

AIRBLS TRAINING A320	TAKEOFF	2.02.18	P 3
SIMULATOR FLIGHT CREW OPERATING MANUAL	MTOW CALCULATION (WEIGHT ENTRY)	SEQ 255	REV 34

CORRECTIONS FOR WET OR CONTAMINATED RUNWAYS FROM FCOM 2.04.10

(Refer to FCOM 2.04.10)

CORRECTIONS PRODUCED ON THE RTOW CHART (SEE EXAMPLE ON 2.02.16 P 6)

A description of this correction is given on 2.02.16 p 3. The list of corrections is not exhaustive, however the most commonly used corrections are wet runway, QNH, air conditioning and/or anti ice. A maximum of three corrections can be produced on one chart.

To apply the corrections, proceed as follows :

- 1. Determine the maximum takeoff weight before correction for the given OAT and wind condition.
- 2. Apply the first correction :

If OAT is less than or equal to TVMC (line 3), apply $\triangle W$ correction from line 1 and $\triangle V1/\triangle VR/\triangle V2$ corrections from line 2.

Else, (for OAT greater than TVMC), apply \triangle W correction from line 3 and \triangle V1/ \triangle VR/ \triangle V2 corrections from line 4.

3. To combine a second (and third, as applicable) correction :

If OAT is less than or equal to TVMC (line 3), apply $\triangle W$ correction from line 1 and $\triangle V1/\triangle VR/\triangle V2$ corrections from line 2.

Check that the resulting speeds are higher than the minimum speeds displayed on the RTOW chart and that V2 is higher than the VMU limited speed (FCOM 2.02.25).

If OAT is higher than TVMC (line 3) or if the above speed check is not fulfilled, apply $\triangle W$ correction from line 3 and $\triangle V1/\triangle VR/\triangle V2$ corrections from line 4. No speed check is required.

- $\frac{\textit{Note}: \textit{QNH correction is given for } \pm 10 \textit{ hPa. It is allowed to extrapolate linearly for greater \textit{QNH deviation.}}$
 - When using a takeoff chart with failure cases, it is not allowed to combine two failure cases.
 - Corrections from the chart must be applied from top to bottom, i.e. in the RTOW on 2.02.16 p 6, apply the wet correction first.
 - If asterisk or dotted lines appear in the correction boxes, refer to more conservative corrections provided in the FCOM.
 - No speed check is required for the first correction. However, if the first influence correction follows a conservative FCOM correction, a speed check is required.

_							
AII	A320	Т	AKEOFF		2.02.18	3	P 4
					00 27		EV 27
FL	IGHT CREW OPERATING MANUAL	MTOW CALCULA		INTRY)	SEQ 27	UK	EV 37
R	Example B DATA : OAT Head wind QNH WET runway Use the chart from 2.0 • Enter the 10 kt head max TO weight (1000 • Enter the 10 kt head max TO weight (1000 • Retain CONF 1+F fo • Read associated speed • Apply WET correction For OAT < TVMC (6 Intermediate weight Associated speeds, V1 = 155 kt - 8 = VR = 156 kt - 2 = V2 = 158 kt - 2 = V2 = 158 kt - 2 = (No speed check req • Apply QNH correction For OAT < TVMC (6 Maximum permissibil Associated speeds, V1 = 147 kt - 1 × 1 VR = 154 kt - 1 × 1 VZ = 156 kt - 1 × 1	= 998 hPa 02.16 p 6. wind column COI 0 kg) wind column COI 0 kg) r takeoff eds as V1 = 155 n 9°C), $\triangle W = (1000 kg) 147 kt 154 kt 156 kt uired for first corr n 1°C), \triangle W = - 0.e takeoff weight (15/10 = 145 kt15/10 = 153 kt15/10 = 155 kt$	NF 2, to read for kt, VR = 156 kt ection) 7 × 15/10 = 1000 kg)	45°C , V2 = 	158 kt	· · · · ·	
	Takeoff Configuration : 1+F						
		TOW	V1 155	V	<u>к</u> 156	<u> </u>	/2 158
	TOW (RTOW) FCOM correction(s)	80.6	100		100		120
	Intermediate value	80.6	155		156		158
		00.0	155		100		100

- 8

147

- 2

145

- 2

154

- 1

153

- 2

156

- 1

155

- 0.7

79.9

- 1

78.9

WET Correction

QNH Correction

Final value

Intermediate value

AIRBUS TRAINING A320	TAKEOFF	2.02.18	Ρ5
	MTOW CALCULATION (WEIGHT ENTRY)	SEQ 255	REV 37
	IONS EDONA ECONA AND CHADT		

COMBINING CORRECTIONS FROM FCOM AND CHART

Proceed as follows :

- 1. Determine the maximum takeoff weight by entering the chart with selected configuration, OAT and wind.
- 2. Apply corrections from FCOM to determine an intermediate weight. Interpolate associated speeds for intermediate weight in the same column (same wind and configuration).
- 3. Apply corrections from RTOW chart as explained above.

Example C

DATA : OAT	$= 25^{\circ}C$
Head wind	= 10 kt
Air conditioning	ON
QNH	= 998 hPa
WET runway	
1. Use the chart from 2.0	
	vind column CONF 1+F, to read for 25°C
	kg) air conditioning OFF = $80.6 + 0.46 \times 1 + 0.06 \times 19 = 82.2$
	vind column CONF 2, to read for 25°C
	kg) air conditioning OFF = $80.3 + 0.47 \times 2 + 0.05 \times 19 = 82.2$
Retain CONF 1+F for	
2. First, apply the correc	tion from FCOM page 2.02.24 p 1.
Max TO weight (TUUU	kg) air conditioning OFF
	tion
V1 = 155 kt, $VR = 1$	eds for 80.0 (1000 kg) in the 10 kt head wind column, 56 kt $1/2 - 158 kt$
3. Apply WET correction	JO(KI, VZ) = IJO(KI)
	$^{\circ}$ C), \triangle W =
Associated speeds,	
V1 = 155 kt - 8 = 1	47 kt
VR = 156 kt - 2 = 1	54 kt
V2 = 158 kt − 2 = 1	56 kt
Apply QNH correction	
For OAT < TVMC (61	^o C), $\triangle W = -0.7 \times 15/10 = \dots $
Maximum permissible	takeoff weight
Associated speed,	
$V1 = 147 \text{ kt} - 1 \times 15$	
$VR = 154 \text{ kt} - 1 \times 152 \text{ kt}$	
$V2 = 156 \text{ kt} - 1 \times 150 \text{ kt}$	b/10 = 155 kt

R

AIRBUS TRAINING A320	TAKEOFF	2.02.18	P 6
FLIGHT CREW OPERATING MANUAL	MTOW CALCULATION (WEIGHT ENTRY)	SEQ 255	REV 34

Check that the speeds are higher than minimum speeds from the chart and from VMU table. (It is reminded that if the speed checks are not fulfilled, the corrections must be recalculated using those provided on lines 3 and 4).

Since the speed check is fulfilled :

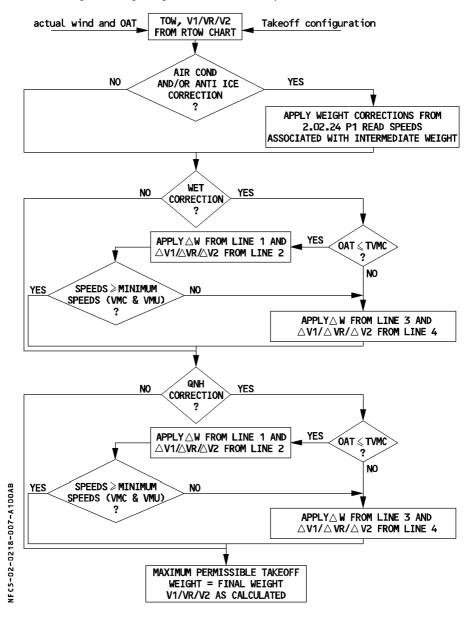
Max permissible takeoff weight = 78.3 (1000 kg)

V1 = 145 kt, VR = 153 kt, V2 = 155 kt.

	Takeoff Configuration : 1+F			
	TOW	V1	VR	V2
TOW (RTOW)	82.2			
FCOM correction(s)	- 2.2			
Intermediate value	80.0	155	156	158
WET Correction	– 0.7	- 8	- 2	- 2
Intermediate value	79.3	147	154	156
QNH Correction	– 1	- 2	– 1	- 1
Final value	78.3	145	153	155

EXTRAPOLATION

For OAT lower than the lowest temperature value of a wind column, it is possible to obtain a higher maximum permissible takeoff weight by using Grad 1/Grad 2 values. See page 1 for more details.


MAXIMUM STRUCTURAL TAKEOFF WEIGHT

The maximum structural takeoff weight is a weight limitation depending on the aircraft. This limitation is provided in the Flight Manual and in the chapter limitation of the FCOM3. Compare the maximum structural takeoff weight to the maximum permissible takeoff weight computed for given conditions and retain the lower of the two values.

AIRBUN TRAINING	TAKEOFF	2.02.18	P 7
	MTOW CALCULATION (WEIGHT ENTRY)	SEQ 100	REV 22

SUMMARY

The following flow diagram gives the different steps to follow.

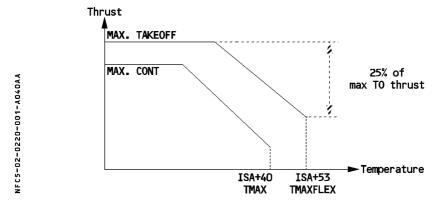
FLIGHT CREW OPERATING MANUAL

FLEXIBLE TAKEOFF (WEIGHT ENTRY)

DEFINITION OF FLEXIBLE TAKEOFF

In many cases, the aircraft takes off with a weight lower than the maximum permissible takeoff weight. When this happens, it can meet the required performance (runway, second segment, obstacle....) with a decreased thrust that is adapted to the weight : this is called FLEXIBLE TAKEOFF and the thrust is called FLEXIBLE TAKEOFF THRUST. The use of flexible takeoff thrust saves engine life.

USE OF FLEXIBLE TAKEOFF


The pilot can use flexible takeoff when the actual takeoff weight is lower than the maximum permissible takeoff weight for the actual temperature. The maximum permissible takeoff weight decreases when temperature increases, so it is possible to assume a temperature at which the actual takeoff weight would be the limiting one. This temperature is called FLEXIBLE TEMPERATURE or assumed temperature and is entered in the FADEC via the MCDU PERF TO page in order to get the adapted thrust.

REQUIREMENTS

- Thrust must not be reduced by more than 25 % of the full rated takeoff thrust.
- The flexible takeoff N1 cannot be lower than the Max Climb N1 at the same flight conditions.

The FADEC takes the above two constraints into account to determine flexible N1. The above two constraints also limit the maximum flexible temperature at ISA + 53 (68°C at sea level).

- The flexible takeoff thrust cannot be lower than the Max Continuous thrust used for the final takeoff flight path computation (at ISA + 40).
- R - The flexible temperature cannot be lower than the flat rating temperature, TREF* (ISA
 - + 29 up to 2000 feet), or the actual temperature (OAT).

R Note : *TREF being a function of pressure altitude, read it on the takeoff chart.

AIRBUS TRAINING
A320
SIMULATOR
FLIGHT CREW OPERATING MANU

FLEXIBLE TAKEOFF (WEIGHT ENTRY)

- Flexible takeoff is not permitted on contaminated runways.
- The operator should check the maximum thrust (TOGA) at regular intervals in order to detect any engine deterioration, or maintain an adequate engine performance monitoring program to follow up the engine parameters.

RECOMMENDATION

- $R \quad \cdot \mbox{ In order to extend engine life and save maintenance costs, it is recommended to use flexible thrust reduction.}$
 - \cdot However, to improve the takeoff performance, the thrust can be increased by selecting a lower flexible temperature.

Using the same takeoff chart, for a given weight it is possible to :

- Select a temperature lower than the maximum determined one and keep the speeds defined at maximum temperature or,
- Move towards the left side of the takeoff chart (tailwind) while remaining with the same configuration and looking for the same actual takeoff weight.

This produces a lower flexible temperature and, in general, lower takeoff speeds (V1/VR/V2).

Using one of the two above possibilities, check that the selected temperature is greater than the actual temperature (OAT) and greater than the flat rating temperature (TREF).

TAKEOFF PROCEDURE

Depending on environmental takeoff conditions, the following procedure is recommended.

CONDITIONS	PROCEDURE	REASON
Dry or wet well paved runway	 Use the flap setting giving the highest flexible temperature. When flexible temperature difference between two flap settings is low, use the highest flap setting. 	Extend engine life and save maintenance costs.
High altitude takeoff	— Use CONF2/CONF3	Improve comfort
Badly paved runway or Accelerate stop distance limited runway	 Use CONF2/CONF3 or Move towards left side of the takeoff chart 	Improve comfort Improve stopping distance
Windshear expected along takeoff path	 Use maximum thrust 	Maintain acceleration capability
Contaminated runway	— Use maximum thrust (flex forbidden)	Improve stopping distance Decrease time on runway. Required by regulations.

FLEXIBLE TAKEOFF (WEIGHT ENTRY)

2.02.20

SEQ 270 REV 34

P 3

DETERMINATION OF FLEXIBLE TAKEOFF TEMPERATURE AND SPEEDS

Before determining the flexible temperature, calculate the maximum permissible takeoff weight (see previous section) and ensure that the actual takeoff weight is lower than the determined maximum takeoff weight.

- For a given configuration and wind value, enter the RTOW chart with the actual takeoff weight to read the flexible temperature and associated speeds. It is reminded that the takeoff weight is the sum of the weight entry and the delta weight displayed in each box. It is allowed to interpolate between two consecutive rows and/or columns for weight and for wind values not displayed on the chart.
- Repeat this process for the other configuration available. Select that configuration giving the highest flexible temperature.

CORRECTIONS DUE TO DIFFERENT TAKEOFF CONDITIONS

When the takeoff conditions are different from those provided on the chart, apply the associated corrections.

RNote : If the RTOW chart is based on the CG being at 25 %, the crew can determine the
flexible temperature at a more forward CG by decreasing the flexible temperature
by 2°C. V1, VR and V2 must be increased by 1 knot.

CONSERVATIVE CORRECTIONS FOR QNH AND BLEEDS FROM FCOM 2.02.24 P 1

Corrections are given for QNH \neq 1013 hPa, air conditioning ON, anti ice ON.

- 1. For a given takeoff weight, wind condition and selected configuration, read the flexible temperature. Retain the takeoff speeds associated with the actual weight.
- Apply the published temperature correction. To combine two or more corrections, add the different corrections and apply to temperature value. (No speed corrections required).

<u>Example D</u>

DATA :	Actual takeoff weight	=	68 000 kg
	Head wind	=	10 kt
	Air conditioning ON		
	QNH	=	1013 hPa
		_	

Use the chart from 2.02.16 p 6. Determine the maximum permissible takeoff weight (see example A). The actual weight being lower than the maximum one, flexible takeoff is possible.

Enter the 10 kt head wind column and interpolate for 68 000 kg, CONF $1+F$,
Flexible temperature
Enter the 10 kt head wind column and interpolate for 68 000 kg, CONF 2,
Flexible temperature

FLIGHT CREW OPERATING MANUA

FLEXIBLE TAKEOFF (WEIGHT ENTRY)

TAKEOFF

2.02.20	

P 4

Retain CONF 1+F for takeoff configuration. Takeoff speeds are V1 = 153 kt, VR = 153 kt, V2 = 154 kt

CORRECTIONS FOR WET RUNWAY FROM FCOM 2.04.10

(Refer to FCOM 2.04.10)

CORRECTIONS PRODUCED ON THE RTOW CHART (SEE EXAMPLE ON 2.02.16 P 6)

A description of this correction is given on 2.02.16 p 3. The list of corrections is not exhaustive, however the most commonly used corrections are wet runway, QNH, air conditioning and/or anti-icing. A maximum of three corrections can be produced on one chart.

To apply the correction, proceed as follows :

- 1. Enter the chart with selected configuration, wind and actual takeoff weight to read the flexible temperature associated with this weight.
- 2. Apply the first correction :

If the flexible temperature is less than or equal to TVMC (line 3), apply \triangle Tflex correction from line 1 and apply speed corrections ($\Delta V1/\Delta VR/\Delta V2$) from line 2.

Else, (flexible temperature greater than TVMC), apply \triangle Tflex from line 3 and \triangle V1/ \triangle VR/ \triangle V2 corrections from line 4.

Check V2 against VMU limitation (FCOM 2.02.25). If V2 is lower than V2 limited by VMU, flexible takeoff is not possible. Set TOGA thrust and retain the speeds associated with maximum permissible takeoff weight or the speeds read in the chart for the actual weight if they are all lower.

No speed correction is required for QNH and bleeds influence (Not applicable to maximum takeoff weight determination).

- 3. To combine a second and/or a third correction, proceed as per point 2.
- 4. Check that the final flexible temperature is :
 - higher than OAT and TREF
 - limited to TMAXFLEX

If the check is fulfilled, retain final flexible temperature as the one to be inserted in the MCDU.

If the check is not fulfilled, (final flexible temperature lower than OAT or TREF), no flexible takeoff is possible.

Use TOGA thrust and retain speeds that have been calculated for the maximum permissible takeoff weight. (See 2.02.20 p 7)

- Note: QNH correction is given for \pm 10 hPa. It is allowed to extrapolate linearly for greater QNH deviation.
 - Corrections from the chart must be applied from top to bottom, i.e. in the RTOW on 2.02.16 p 6, apply the wet influence first.

AIRBUS TRAINING	
A 320	
SIMULATOR	

AIRE

AIRBUS TRAIN	^{ING}	TAKEOFF	2.02.20	Р 5								
		Flexible Takeoff (Weight Entry)	SEQ 270	REV 36								
Not	<u>Note</u> : — When the flexible temperature is higher than TVMC, it is allowed to limit the flexible temperature to TVMC and apply only corrections from lines 1 and 2. — If asterisk or dotted lines appear in the correction boxes, refer to more conservative corrections provided in the FCOM.											
DAT Use (see	Head wind QNH WET runway Air conditioni the chart from 2. e example B). The											
Ent Fle> Ent Fle> Ret Tak	is possible. Enter the 10 kt head wind column and interpolate for 68 000 kg, CONF $1+F$, Flexible temperature											
For Inte Ass V1 VR V2 Che	flexible temperatu rmediate flex temp ociated speeds, = 153 kt $- 8 = 1$ = 153 kt $- 2 = 1$ = 154 kt $- 2 = 1$ ck V2 against VM	re < TVMC (69° C), ∆Tflex = perature 45 kt 151 kt 52 kt U limitation in FCOM 2.02.25.										
R For Ma: Che No	kimum flexible tem ck that OAT/TREF speed correction.	TVMC (61° C), $△$ Tflex =		· · · · <u>- 3° C</u> · · · · 62° C								
		Takooff Configuration :	1 _ F									

	Takeoff Configuration : 1 + F								
	Tflex	V1	VR	V2					
Chart temperature	67	153	153	154					
FCOM correction(s)									
Intermediate value	67	153	153	154					
WET Correction	- 2	- 8	- 2	- 2					
Intermediate value	65	145	151	152					
QNH Correction	- 3	0	0	0					
Final value	62	145	151	152					

AIRBUS TRAINING	TAKEOFF	2.02.20	P 6							
FLIGHT CREW OPERATING MANUAL	Flexible Takeoff (Weight Entry)	SEQ 255	REV 37							
COMBINING CORRECT	IONS FROM FCOM AND CHART									
2. Apply corrections f	rom FCOM (see 2.02.24 p 1). rom the RTOW chart. tions except for QNH and bleed influences	S.								
Head wind Air conditioni QNH WET runway Use the chart from 2.	998 hPa02.16 p 6. Determine the maximum permi	ssible takeof num one, fle:	f weight xible takeoff							
is possible. • Enter the 10 kt head Flexible temperature • Enter the 10 kt head Flexible temperature • Retain CONF 1+F fc	(see example C). The actual weight being lower than the maximum one, flexible takeoff is possible. • Enter the 10 kt head wind column and interpolate for 68 000 kg, CONF 1+F, Flexible temperature									
First, apply the corre Flexible temperature Air conditioning corr Intermediate flexible No speed correction	Takeoff speeds are V1 = 153 kt, VR = 153 kt, V2 = 154 kt • First, apply the correction from FCOM page 2.02.24 p 1. Flexible temperature with air conditioning OFF • Air conditioning correction • Of C • Intermediate flexible temperature									
	ure < TVMC (69° C), ∆Tflex = nperature 145 kt 151 kt									
R Check V2 against VN	AU limitation in FCOM 2.02.25.									
Maximum flexible te	ure $<$ TVMC (61° C), \triangle Tflex = mperature F $<$ flex temperature \leq TMAXFLEX									
Takeoff speeds are V	$V_1 = 145$ kt, VR = 151 kt, V2 = 152 kt									

2.02.20

SEQ 255

P 7 REV 34

FLEXIBLE TAKEOFF (WEIGHT ENTRY)

	Takeoff Configuration : 1 + F									
	Tflex	V1	VR	V2						
Chart temperature	67	153	153	154						
FCOM correction(s)	- 7	0	0	0						
Intermediate value	60	153	153	154						
WET Correction	- 2	- 8	- 2	- 2						
Intermediate value	58	145	151	152						
QNH Correction	- 3	0	0	0						
Final value	55	145	151	152						

FLEXIBLE TAKEOFF NOT POSSIBLE

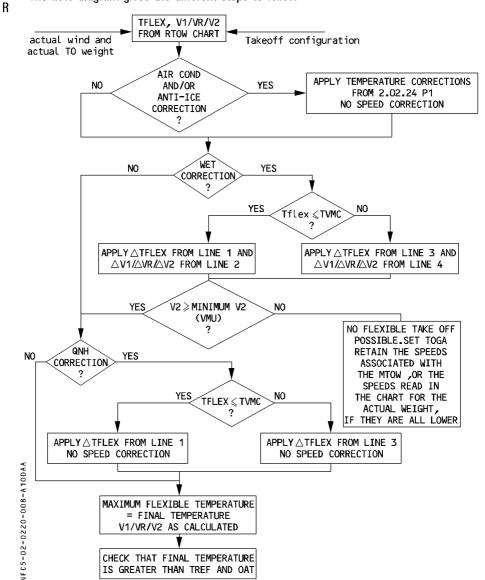
In some cases when the actual takeoff weight is lower than the maximum permissible one but no flexible takeoff possible (that is flexible temperature lower than TREF or OAT) :

- It is mandatory to use TOGA thrust

 You can retain the speeds that have been calculated for the maximum permissible takeoff weight;

OR

 You can retain the speeds associated with the actual takeoff weight provided they are all lower than the speeds calculated for the maximum permissible takeoff weight.



FLEXIBLE TAKEOFF (WEIGHT ENTRY)

P 8

SUMMARY

The flow diagram gives the different steps to follow

R

TAKEOFF

QNH/BLEEDS CORRECTION

ON SEQ 245

EFFECT OF QNH AND BLEEDS (up to 9200 feet)

	To take into accoun	t QNH deviation and	l/or bleeds ON apply
	V		
	CORRECTIONS ON TEMPERATURE IF FLEX TAKEOFF PERFORMED		CORRECTIONS ON WEIGHT IF TAKEOFF WITH FULL THRUST IS PERFORMED
	No correction except if actual pressure altitude is between 2000 ft and 4000 ft: subtract 1°C/3hPa	QNH above 1013 hPa	No correction except if actual pressure altitude is between 2000 ft and 4000 ft: subtract 40 kg/hPa
	Subtract 1°C/2hPa	QNH below 1013 hPa	Subtract 140 kg/hPa
	Subtract 5°C	* Engine A/ICE ON	Subtract 300 kg
	Subtract 11°C	*	OAT ≤ ISA + 5 Subtract 950 kg
T		Total A/ICE ON	OAT > ISA + 5 Subtract 1650 kg
-A245AA	Subtract 7°C	Air Conditioning ON	Subtract 2200 kg
-0224-001	Compare corrected temp (CT), flat rating temp (T REF) and OAT	CT higher than C and CT higher than T	limited to ISA + 53
NFC5-02		Either conditions not fulfilled	

<u>Note</u> : - * Corrections valid only for OAT < 10°C - For high altitude operation, refer to 2.02.24 p 3 (if applicable)

EXAMPLES

 $\overline{\text{Airport geometric elevation}} = 450$ feet

Takeoff chart data

 $\overline{\text{QNH}} = 1013 \text{ hPa}$ Anti ice OFF Air conditioning OFF

2CM ALL

AIRBUS TRAINING	
(A320	
SIMULATOR	
FLIGHT CREW OPERATING MANUA	L

QNH/BLEEDS CORRECTION

Example 1 - Full thrust takeoff

Example 2 - Flexible thrust takeoff

Actual data : $OAT = 5^{\circ}C$ ONH = 1040 hPa Anti ice OFF Air conditioning ON TOW = 65000 kg Flexible temperature read on the takeoff chart : TFLEX = 55^{\circ}C Read TREF on the takeoff chart or on the quick reference table. Read in the above table the correction for QNH and air conditioning ON : QNH correction = none Air conditioning ON correction : $-7^{\circ}C$ New flexible temperature = $55 - 7 = 48^{\circ}C$ Check that the flexible temperature is above TREF and actual OAT. Check that the flexible temperature is less than the maximum flexible temperature and retain the lower of the two.

MINIMUM SPEEDS

SPEEDS LIMITED BY VMC

Takeoff speeds all have a minimum value limited by control. These minimum values are given in the tables down below.

R

Pressure altitude (ft)	-2000	0	1000	2000	3000	4000	5000	6000	7000	8000	9200	14100	
CONF 1 + F	117	115	114	113	112	112	111	110	109	108	106	100	V1
CONF 2	115	113	112	111	111	110	109	108	107	106	104	100	min
CONF 3	114	112	111	110	110	110	109	108	107	105	104	100	

R

Pressure altitude (ft)	-2000	0	1000	2000	3000	4000	5000	6000	7000	8000	9200	14100	
CONF 1 + F	121	119	118	116	116	116	115	114	113	111	110	102	VR
CONF 2	119	117	116	115	114	114	113	112	111	109	108	100	min
CONF 3	118	116	115	114	114	114	113	112	110	109	107	100	

R

Pressure altitude (ft)	-2000	0	1000	2000	3000	4000	5000	6000	7000	8000	9200	14100	
CONF 1 + F	124	121	120	119	119	119	118	117	115	114	112	104	V2
CONF 2	123	121	120	119	119	119	117	116	115	114	112	103	min
CONF 3	123	121	120	119	119	118	117	116	115	114	112	103	

V2 LIMITED BY VMU/VMCA

The following tables, one per configuration, provide the V2 limited by minimum unstick speed and minimum control speed in the air.

AIRBUS TRAINING

(A)

A320

TAKEOFF MINIMUM SPEEDS

2.02.25

SEQ 350 REV 38

Ρ2

FLIGHT CREW OPERATING MANUAL

	MINIMUM V2 LIMITED BY VMU/VMCA (KT IAS)											
CONFIGURAT	CONFIGURATION 1+F											
PRESSURE ALTITUDE	TAKEOFF WEIGHT (1000 KG)											
(FT)	45	50	55	60	65	70	75	80				
-2000	124	124	130	135	140	145	150	155				
0	121	124	130	135	140	145	150	155				
1000	120	124	130	135	140	145	151	155				
2000	119	124	129	135	140	146	151	155				
3000	119	124	130	135	140	146	151	156				
4000	119	124	130	135	141	146	151	156				
5000	119	124	130	135	141	146	151	156				
6000	119	124	130	135	141	146	152	156				
7000	119	124	130	136	141	146	152	156				
8000	118	124	130	136	141	147	152	157				
9000	118	124	130	136	141	147	152	157				
10000	118	124	130	136	141	147	152	157				
11000	118	124	130	136	142	147	153	157				
12000	118	124	130	136	142	147	153	158				
13000	118	124	130	136	142	148	153	158				
14100	118	124	130	136	142	148	153	158				

AIRBUS TRAINING A320

FLIGHT CREW OPERATING MANUAL

TAKEOFF MINIMUM SPEEDS

2.02.25

SEQ 350

REV 38

Ρ3

	I	MINIMUM	V2 LIMITE	d by vmi	J/VMCA (K	T IAS)						
CONFIGURAT	CONFIGURATION 2											
PRESSURE	TAKEOFF WEIGHT (1000 KG)											
ALTITUDE (FT)	45	50	55	60	65	70	75	80				
-2000	123	123	124	129	134	139	144	149				
0	121	121	124	129	134	140	145	149				
1000	120	120	124	129	135	140	145	149				
2000	119	119	124	129	135	140	145	149				
3000	119	119	124	129	135	140	145	150				
4000	119	119	124	130	135	140	145	150				
5000	117	119	124	130	135	140	146	150				
6000	116	119	124	130	135	141	146	150				
7000	115	119	124	130	135	141	146	150				
8000	114	119	124	130	136	141	146	151				
9000	113	119	124	130	136	141	146	151				
10000	113	119	125	130	136	141	147	151				
11000	113	119	125	130	136	141	147	151				
12000	113	119	125	131	136	142	147	152				
13000	113	119	125	131	136	142	147	152				
14100	113	119	125	131	137	142	147	152				

AIRBUS TRAINING

(A)

A320

TAKEOFF MINIMUM SPEEDS

2.02.25

SEQ 350

REV 38

Ρ4

FLIGHT CREW OPERATING MANUAL

	MINIMUM V2 LIMITED BY VMU/VMCA (KT IAS)											
CONFIGURAT	CONFIGURATION 3											
PRESSURE	TAKEOFF WEIGHT (1000 KG)											
ALTITUDE (FT)	45	50	55	60	65	70	75	80				
-2000	123	123	123	124	129	134	139	143				
0	121	121	121	124	129	135	140	144				
1000	120	120	120	124	129	135	140	144				
2000	119	119	119	124	130	135	140	144				
3000	119	119	119	124	130	135	140	144				
4000	118	118	119	124	130	135	140	144				
5000	117	117	119	125	130	135	140	144				
6000	116	116	120	125	130	135	140	145				
7000	115	115	120	125	130	136	141	145				
8000	114	114	119	125	130	136	141	145				
9000	112	114	120	125	131	136	141	145				
10000	110	114	120	125	131	136	141	145				
11000	109	114	120	125	131	136	141	145				
12000	109	114	120	126	131	137	142	146				
13000	108	114	120	126	131	137	142	146				
14100	109	115	120	126	132	137	142	146				

TAKEOFF OUICK REFERENCE TABLES

INTRODUCTION

These tables enable the crew to quickly determine the takeoff performance at an airport for which no takeoff chart has been established. They are conservative.

USE OF TABLES

A first table gives the corrections to be applied to the runway length for wind and runway slope. Nine other tables give, for three different pressure altitudes (0, 1000 and 2000 feet) and three configurations, the maximum takeoff weight, limitation codes and associated speeds as a function of temperature and corrected runway length. TREF and TMAX are given on the top of each table. For pressure altitudes above 2000 feet, use a specific RTOW chart.

<u>Note</u> : 1. Quick reference tables are established for the forward CG envelope (less than 25%) at V1 min with air conditioning OFF and anti ice OFF

2. Do not use quick reference tables in case of tailwind.

HOW TO PROCEED

- 1. Enter the first table with runway length, slope and wind data. Determine the corrected runway length by applying the corrections due to slope and wind.
- 2. Select the configuration as a function of this corrected runway length.
- 3. Enter the table(s) corresponding to the configuration and airport pressure altitude. As far as airport pressure altitude is concerned, two methods may be applied :
 - interpolate the takeoff performance by using the two tables enclosing the airport pressure altitude,
 - for a more conservative figure, use the table corresponding to the pressure altitude immediately above the airport pressure altitude.
- 4. Enter the appropriate column of the table(s) with the corrected runway length. Once again, two methods may be applied :
 - interpolate the takeoff performance between the two columns enclosing the corrected runway length,
 - for a more conservative figure, use the column corresponding to the shorter corrected runway length.
- 5. Determination of maximum takeoff weight.

Enter the table(s) and column(s) as explained above with the actual OAT and read maximum takeoff weight, limitation codes, V1, VR and V2. If necessary interpolate weight and speeds.

6. Determination of flexible temperature.

The determination of flexible temperature is possible only when there is no obstacle on the flight path. Enter the table(s) and column(s) with the actual takeoff weight and read the corresponding temperature as flexible temperature.

7. In case of obstacles, use the graphs from 2.02.50 to determine the corresponding weight penalty.

AIRBUS TRAINING A320	TAKEOFF	2.02.40	P 2
SINULATOR FLIGHT CREW OPERATING MANUAL	QUICK REFERENCE TABLES	SEQ 260	REV 37

LIMITATION CODES

- 1 : first segment
- 2 : second segment
- 3 : runway
- -5: tire speed
- 6 : brake energy
- -7: maximum computation weight
- 8 : final takeoff
- 9 : VMU

CORRECTIONS FOR WIND AND RUNWAY SLOPE

Runway length (m)		1500	1750	2000	2250	2500	2750	3000	3250	3500
Effect of wind	per knot of head wind add (meters)	6.5	7	8	8.5	9.5	10	11	11.5	12.5
Effect of	per percent uphill slope subtract (meters)	160	215	270	325	380	435	490	545	600
runway slope	per percent downhill slope add (meters)	17	23	29	36	42	48	55	61	67

<u>Note</u> : 1. Limitation code 4 (obstacles) does not appear in quick reference tables. 2. VMC limitation appears with an asterisk (*) in the chart.

AIRBUS TRAINING A320	TAKEOFF	2.02.40	Р3
	QUICK REFERENCE TABLES	SEQ 300	REV 3

34

EXAMPLE

Pressure altitude	:	1400 ft
Temperature	:	30°C
Runway length	:	2750 m
Wind	:	10 kt head
Slope	:	1 % up
Takeoff configuration	:	1 + F

- Determination of corrected runway length

(Refer to 2.02.40 p2)
runway length
correction for wind $\dots \dots \dots$
correction for slope
corrected runway length

- Determination of a conservative maximum takeoff weight :

(Refer to 2.02.40 p6)

- Pressure altitude : 1400 ft Use the table for 2000 ft.
- Enter the column corresponding to 2250 m
- Read the maximum takeoff weight on the line corresponding to the temperature of 30°C : 71300 kg

V1 = 139 kt, VR = 146 kt, V2 = 148 kt

Determination of a precise flexible temperature for the actual takeoff weight of 64000 kg :

(Refer to 2.02.40 p5 and p6)

 Interpolate the temperature corresponding to 64000 kg for the runway length of 2415 m at 1000 ft and 2000 ft pressure altitude.
 Results :

1000 ft : 61°C, V1 = 138 kt, VR = 139 kt, V2 = 140 kt

- 2000 ft : 57°C, V1 = 137 kt, VR = 139 kt, V2 = 140 kt
- Interpolate between these two values to get the flexible temperature 1400 ft : 59°C, V1 = 137 kt, VR = 139 kt, V2 = 140 kt

AIRBUS TRAINING

"

A320

CONFIGURATION 1+F

TAKEOFF

2.02.40

SEQ 300

P 4 **REV 34**

FWD CG

SIMULATOR LIGHT CREW OPERATING MANUA

QUICK REFERENCE TABLES

PRESSURE ALTITUDE = 0 FT

			••••					
TREF =	44 °C		DRY RUNWAY	MAX TO WEIGHT	1000KG) CODES			
TMAX =	= 55 ℃		SLOPE = 0 %	IAS(KT) : V	1 / VR / V2			
TEMP.		CORRECT	ED RUNWAY LEN	GTH (M)				
(°C)	2250	2500	2750	3000	3250			
-20	80.4 3/9	82.9 3/6	83.8 3/6	84.5 3/6	85.1 3/6			
	150/53/55	155/57/59	154/59/61	154/62/64	153/64/66			
-10	79.4 3/9	82.2 3/6	83.0 3/6	83.8 3/6	84.5 3/6			
	148/52/54	153/55/57	152/57/59	151/60/62	151/62/64			
0	78.4 3/9	81.3 3/6	82.4 3/6	83.1 3/6	83.9 3/6			
	147/51/53	151/54/56	150/55/57	149/58/60	148/60/62			
10	77.3 3/9	80.2 3/6	81.5 3/6	82.5 3/6	83.2 3/6			
	145/50/52	149/53/55	148/54/56	147/56/58	146/58/60			
20	76.0 3/9	79.2 3/6	80.5 3/6	81.6 3/6	82.4 3/6			
	143/49/51	147/52/54	146/53/55	145/54/56	144/57/58			
30	74.8 3/9	78.1 3/6	79.5 3/6	80.6 3/6	81.7 3/6			
	142/48/50	145/51/53	144/52/54	143/53/55	142/55/57			
40	73.6 3/9	77.1 3/6	78.5 3/6	79.7 3/6	80.9 3/6			
	141/47/49	144/50/51	142/51/53	141/52/54	140/54/55			
44	73.1 3/9	76.6 3/6	78.1 3/6	79.3 3/6	80.5 3/6			
	140/47/49	143/49/51	142/51/52	140/52/54	139/53/55			
46	72.1 3/9	75.7 3/6	77.2 3/6	78.3 3/6	79.4 3/6			
	140/46/48	144/49/51	142/50/52	141/51/53	140/52/54			
48	71.1 3/9	74.6 3/6	76.2 3/6	77.4 3/6	78.1 3/6			
	140/45/47	144/48/50	143/49/51	142/50/52	141/52/54			
50	70.2 3/9	73.4 3/9	75.2 3/6	76.2 3/6	76.9 3/6			
	139/44/46	144/48/49	144/49/50	143/50/51	142/52/54			
52	69.2 3/9	72.3 3/9	74.2 3/6	75.0 3/6	75.6 3/6			
	139/43/45	143/47/48	145/48/50	144/50/51	143/52/53			
54	68.2 3/9	71.2 3/9	73.2 3/6	73.8 3/6	74.4 3/6			
	139/42/44	143/46/47	146/48/49	145/50/51	145/52/53			
55	67.8 3/9	70.6 3/9	72.6 3/6	73.2 3/6	73.7 3/6			
	138/42/43	143/45/47	146/48/49	146/50/51	145/52/53			
57	66.8 3/9	69.5 3/9	71.3 3/6	71.9 3/6	72.4 3/6			
	138/41/42	143/44/45	147/48/49	147/50/51	146/52/53			
59	65.8 3/9	68.3 3/9	70.0 2/3	70.7 3/6	71.1 3/6			
	138/40/41	142/43/44	147/47/48	148/50/51	148/52/53			
61	64.8 3/9	67.2 3/9	68.7 2/3	69.5 3/6	69.9 3/6			
	137/39/40	142/42/43	147/47/48	149/51/51	149/52/53			
63	63.8 3/9	65.9 3/3	67.3 3/3	68.3 3/6	68.7 3/6			
	137/38/39	142/42/43	147/47/48	151/51/51	150/52/53			

142/42/43

141/41/42

140/40/41

3/3

3/3

3/3

64.6

63.3

62.6

146/46/47

145/45/45

145/45/45

3/3

3/3

3/3

65.9

64.5

63.8

150/50/51

149/49/50

148/48/48

3/3

3/3

2/3

66.9

65.5

64.7

151/52/53

153/53/53

151/51/52

3/6

3/6

2/3

67.5

66.1

65.4

137/37/38

136/36/37

135/35/36

3/9

3/9

3/9

62.9

61.6

61.0

65

67

68

AIRBUS TRAINING A320 SIMULATOR FLIGHT CREW OPERATING MANUAL

TAKEOFF

2.02.40

Ρ5

QUICK REFERENCE TABLES

CONFIG	URATION 1+F	PR	ESSURE ALTITU	JDE = 1000 FT	FWD CG
TREF =	42 °C		DRY RUNWAY	MAX TO WEIGHT(1000KG) CODES
TMAX =	53 °C		SLOPE = 0 %	IAS(KT) : V	1 / VR / V2
TEMP.		CORRECT	ED RUNWAY LEN	GTH (M)	
(°C)	2250	2500	2750	3000	3250
-20	78.9 3/9	81.6 3/6	82.5 3/6	83.2 3/6	83.8 3/6
	148/51/54	154/55/57	153/58/60	152/60/62	152/63/64
-10	77.9 3/9	80.8 3/6	81.8 3/6	82.6 3/6	83.2 3/6
	147/50/52	151/54/56	150/56/57	150/58/60	149/61/62
0	76.7 3/9	79.9 3/6	81.0 3/6	81.9 3/6	82.6 3/6
	145/49/51	149/53/55	148/54/56	147/56/58	147/59/60
10	75.5 3/9	78.9 3/6	80.0 3/6	81.2 3/6	81.9 3/6
	143/49/51	148/52/53	146/53/55	145/54/56	145/57/59
20	74.2 3/9	77.8 3/6	79.1 3/6	80.2 3/6	81.2 3/6
	142/48/50	146/50/52	145/52/54	143/53/55	143/55/57
30	73.0 3/9	76.6 3/6	78.0 3/6	79.1 3/6	80.3 3/6
	141/47/49	144/49/51	143/51/53	141/52/54	141/53/55
40	71.9 3/9	75.4 3/6	77.0 3/6	78.3 3/6	79.5 3/6
	139/46/48	143/49/51	141/50/52	140/51/53	139/52/54
42	71.6 3/9	75.2 3/6	76.7 3/6	78.1 3/6	79.3 3/6
	139/46/48	142/49/51	141/50/51	140/51/53	138/52/54
44	70.7 3/9	74.2 3/6	75.8 3/6	77.1 3/6	78.2 3/6
	139/45/47	143/48/50	142/49/51	140/50/52	139/51/53
46	69.8 3/9	73.1 3/9	74.8 3/6	76.1 3/6	77.0 3/6
	138/44/46	143/48/49	142/49/50	141/49/51	140/51/52
48	68.9 3/9	72.0 3/9	73.9 3/6	75.0 3/6	75.8 3/6
	138/43/45	142/47/48	143/48/50	142/49/50	141/51/52
50	67.9 3/9 138/42/44	71.0 3/9 142/46/47	73.0 3/6 144/48/49	74.0 3/6 143/49/50	74.6 3/6 142/51/52 73.3 3/6
52	67.0 3/9	69.9 3/9	72.0 3/6	72.8 3/6	73.3 3/6
	137/41/43	142/45/46	145/47/48	144/49/50	143/51/52
	66.5 3/9	69.4 3/9	71.6 3/6	72.2 3/6	72.7 3/6
53	137/41/42 65.6 3/9	09.4 3/9 142/44/45 68.3 3/9	71.0 3/0 145/47/48 70.3 3/6	72.2 3/0 145/49/50 70.9 3/6	72.7 3/0 144/51/52 71.4 3/6
55	137/40/41 64.6 3/9	141/43/44 67.2 3/9	146/46/47 68.9 2/3	146/49/50 69.7 3/6	71.4 3/0 145/51/52 70.1 3/6
57	137/39/40	141/42/43	146/46/47	147/49/50	147/51/52
	63.6 3/9	66.0 3/9	67.5 2/3	68.4 3/6	68.8 3/6
59	136/38/39	<u>141/41/42</u>	145/45/46	148/49/50	148/51/52
	62.7 3/9	64.8 3/3	66.2 3/3	67.2 3/6	67.6 3/6
61	136/37/38	<u>140/40/41</u>	145/45/46	149/49/50	149/51/52
	61.7 3/9	63.5 3/3	64.8 3/3	65.8 3/3	66.4 3/6
63	135/36/37	140/40/41	145/45/45	149/49/49	150/51/52
	60.6 3/9	62.2 3/3	63.5 3/3	64.4 3/3	65.1 2/3
65	135/35/36	140/40/40	143/43/44	148/48/48	151/51/51
66	60.0 3/9	61.6 3/3	62.8 3/3	63.7 2/3	64.4 2/3
	134/34/35	139/39/40	142/43/43	147/47/47	150/50/50

AIRBUS TRAINING

(A.

A320

SIMULATOR

FLIGHT CREW OPERATING MANUAL

TAKEOFF QUICK REFERENCE TABLES

2.02.40

SEQ 300

P 6 REV 34

CONFIG	URATION 1+F	PR	ESSURE ALTITU	JDE = 2000 FT	FWD CG
TREF =	40 °C		DRY RUNWAY	MAX TO WEIGHT(1000KG) CODES
TMAX =	51 °C		SLOPE = 0 %	IAS(KT) : V	1 / VR / V2
TEMP.		CORRECT	ED RUNWAY LEN	GTH (M)	
(°C)	2250	2500	2750	3000	3250
-20	77.3 3/9	80.2 3/6	81.2 3/6	81.9 3/6	82.5 3/6
	147/50/52	152/53/55	151/56/58	151/58/60	150/61/62
-10	76.1 3/9	79.3 3/6	80.5 3/6	81.3 3/6	81.9 3/6
	145/49/51	150/52/54	149/54/55	148/56/58	148/59/60
0	74.9 3/9	78.3 3/6	79.6 3/6	80.6 3/6	81.3 3/6
	143/48/51	148/51/53	147/53/54	146/54/56	145/57/58
10	73.6 3/9	77.3 3/6	78.6 3/6	79.7 3/6	80.6 3/6
	142/48/50	146/50/52	145/52/53	144/53/55	143/55/56
20	72.4 3/9	76.2 3/6	77.6 3/6	78.7 3/6	79.8 3/6
	141/47/49	145/49/51	143/51/52	142/52/54	141/53/55
30	71.3 3/9	74.9 3/6	76.5 3/6	77.8 3/6	78.9 3/6
	139/46/48	143/49/51	142/50/51	140/51/53	139/52/54
40	70.3 3/9	73.7 3/6	75.3 3/6	76.8 3/6	78.0 3/6
	138/45/47	142/48/50	140/49/51	139/50/52	138/51/53
42	69.4 3/9	72.7 3/6	74.4 3/6	75.8 3/6	76.8 3/6
	138/44/46	142/47/49	141/49/50	140/49/51	138/50/52
44	68.4 3/9	71.6 3/9	73.4 3/6	74.7 3/6	75.8 3/6
	137/43/45	141/46/48	142/48/50	140/49/50	139/50/51
46	67.5 3/9	70.6 3/9	72.6 3/6	73.7 3/6	74.6 3/6
	137/42/44	141/45/47	142/48/49	141/48/50	140/50/51
48	66.6 3/9	69.6 3/9	71.7 3/6	72.7 3/6	73.4 3/6
	136/41/43	141/44/46	143/47/48	142/48/49	141/50/51
50	65.7 3/9	68.6 3/9	70.9 3/6	71.7 3/6	72.2 3/6
	136/40/42	140/43/45	144/46/47	143/48/49	143/50/51
51	65.3 3/9	68.1 3/9	70.4 3/6	71.1 3/6	71.6 3/6
	136/40/41	140/43/44	144/46/47	144/48/49	143/50/51
52	64.8 3/9	67.6 3/9	69.8 3/6	70.5 3/6	71.0 3/6
	136/39/41	140/42/44	144/45/46	144/48/49	144/50/51
54	63.9 3/9	66.5 3/9	68.5 2/3	69.3 3/6	69.7 3/6
	135/38/39	140/41/42	144/45/46	145/48/49	145/50/51
56	62.9 3/9	65.4 3/9	67.1 2/3	68.0 3/6	68.4 3/6
	135/37/38	139/40/41	144/44/45	147/48/49	146/50/51
58	61.9 3/9	64.3 3/9	65.7 2/3	66.8 3/6	67.2 3/6
	135/36/37	139/39/40	144/44/45	148/48/49	148/50/51
60	61.0 3/9	63.0 3/3	64.4 3/3	65.4 2/3	66.0 3/6
	134/35/36	139/39/40	143/43/44	147/47/48	149/50/50
62	60.0 3/9	61.8 3/3	63.1 3/3	64.0 2/3	64.8 3/6
	134/34/35	138/38/39	142/42/43	146/46/47	150/50/50
64	58.9 3/9	60.5 3/3	61.8 2/3	62.7 2/3	63.4 2/3
	133/33/34	137/37/38	141/41/42	145/45/46	149/49/49

2.02.40

Ρ7

QUICK REFERENCE TABLES

CONFIGURATION 2		PRESSURE AL	TITUDE = 0 FT	FWD CG		
$TREF = 44 \ ^{\circ}C$		DRY RUNWAY	MAX TO WEIGHT(1000KG) CODES		
TMAX = 55 °C			SLOPE = 0 %	IAS(KT) : V1 / VR / V2		
TEMP.	MP CORRECT		ED RUNWAY LENGTH (M)			
(°C)	1750	2000	2250	2500	2750	
-20	74.3 3/9	78.5 3/9	81.3 2/3	83.2 3/6	84.0 3/6	
	136/40/44	141/43/47	147/48/52	152/54/59	152/57/62	
-10	73.1 3/9	77.5 3/9	80.6 2/3	82.6 3/6	83.4 3/6	
	135/39/43	140/42/46	145/46/50	150/52/57	150/55/60	
0	71.9 3/9	76.5 3/9	79.9 3/9	82.0 3/6	82.7 3/6	
	133/38/43	138/41/45	143/44/49	148/50/55	148/53/58	
10	70.9 3/9	75.3 3/9	79.0 3/9	81.3 3/6	82.0 3/6	
	132/37/41	136/40/45	141/43/48	146/48/53	145/51/56	
20	69.8 3/9	74.1 3/9	78.0 3/9	80.4 3/6	81.3 3/6	
	130/36/40	135/40/44	140/43/47	144/47/51	144/49/54	
30	68.7 3/9	72.9 3/9	77.0 3/9	79.7 3/6	80.5 3/6	
40	129/35/39 67.7 3/9	134/39/43 71.8 3/9	138/42/46 75.9 3/9 137/41/45	142/45/49 78.9 3/6	142/47/52 79.8 3/6 140/46/50	
44	128/34/38 67.3 3/9	133/38/42 71.4 3/9	75.5 3/9	140/44/48 78.5 3/6	79.5 3/6	
46	127/33/38	132/38/42	136/41/45	140/43/47	139/45/49	
	66.5 3/9	70.5 3/9	74.3 3/9	77.5 3/6	78.3 3/6	
48	127/32/37	132/37/41	136/40/44	141/43/47	140/45/49	
	65.6 3/9	69.6 3/9	73.2 3/9	76.1 3/9	77.1 3/6	
50	127/32/36	131/36/40	136/40/44	140/42/46	141/45/49	
	64.8 3/9	68.6 3/9	72.1 3/9	74.8 3/9	75.9 3/6	
52	126/31/35	131/35/39	136/39/43	140/42/46	142/45/49	
	63.9 3/9	67.7 3/9	71.0 3/9	73.5 2/3	74.7 3/6	
54	126/30/34	131/34/38	136/38/42	140/41/45	143/46/49	
	63.1 3/9	66.7 3/9	69.9 3/9	72.2 2/3	73.5 3/6	
55	126/29/33	131/34/37	135/37/40	140/41/44	144/46/49	
	62.6 3/9	66.2 3/9	69.4 3/9	71.5 2/3	72.9 3/6	
57	126/29/33	130/33/37	135/37/40	140/41/44	144/46/49	
	61.7 3/9	65.3 3/9	68.2 3/9	70.1 2/3	71.5 2/3	
59	125/28/32	130/32/36	135/35/39	140/40/44	144/45/49	
	60.8 3/9	64.2 3/9	67.0 3/9	68.7 2/3	70.0 2/3	
<u> </u>	125/27/31	130/31/34	135/35/38	140/40/43	144/45/48	
	60.0 3/9	63.3 3/9	65.7 3/3	67.4 2/3	68.7 2/3	
63	125/26/30	130/30/33	135/35/38	140/40/42	144/44/48	
	59.1 3/9	62.4 3/9	64.5 3/3	66.1 3/3	67.3 2/3	
65	124/26/29	129/29/32	134/34/37	140/40/42	144/44/47	
	58.2 3/9	61.2 3/9	63.3 3/3	64.7 3/3	65.9 2/3	
	124/25/28	129/29/32	134/34/37	139/39/42	143/43/45	
	57.3 3/9	60.0 3/9	62.0 3/3	63.4 3/3	64.5 2/3	
67	123/24/27	128/28/30	133/33/36	138/38/41	142/42/44	
	56.9 3/9	59.5 3/3	61.3 3/3	62.7 3/3	63.8 2/3	
68	123/24/27	128/28/30	132/32/35	137/37/40	141/41/44	

AIRBUS TRAINING

(A)

A320

SIMULATOR

FLIGHT CREW OPERATING MANUAL

TAKEOFF

2.02.40

P 8

QUICK REFERENCE TABLES

CONFIG	URATION 2	PR	ESSURE ALTITU	$JDE=1000\;FT$	FWD CG	
TREF = 42 °C			DRY RUNWAY	MAX TO WEIGHT(1000KG) CO		
$TMAX = 53 \degree C$			SLOPE = 0 %	IAS(KT) : V1 / VR / V2		
TEMP.		CORRECT	ED RUNWAY LEN	GTH (M)		
(°C)	1750	2000	2250	2500	2750	
-20	72.6 3/9	77.0 3/9	79.9 2/3	81.9 3/6	82.8 3/6	
	135/39/43	140/42/46	145/46/50	150/52/57	151/55/60	
-10	71.5 3/9	75.9 3/9	79.2 3/9	81.3 3/6	82.1 3/6	
	133/38/42	138/41/45	143/44/48	148/50/55	148/53/58	
0	70.4 3/9	74.8 3/9	78.4 3/9	80.6 3/6	81.4 3/6	
	132/37/41	137/40/45	141/43/47	147/49/53	146/51/56	
10	69.3 3/9 130/35/40	73.6 3/9 135/40/44	77.5 3/9	79.9 3/6 145/47/51	80.8 3/6 144/49/54	
20	68.2 3/9	72.4 3/9	76.4 3/9	79.2 3/6	80.0 3/6	
	129/34/39	134/39/43	138/42/46	143/45/49	142/48/52	
30	67.2 3/9	71.3 3/9	75.3 3/9	78.4 3/6	79.2 3/6	
	128/33/38	132/38/42	137/41/45	141/43/47	140/46/50	
40	66.2 3/9	70.3 3/9	74.2 3/9	77.5 3/6	78.6 3/6	
	126/32/37	131/37/41	136/40/44	139/42/46	138/44/48	
42	66.0 3/9	70.1 3/9	73.9 3/9	77.3 3/6	78.4 3/6	
	126/32/36	131/37/41	135/40/44	139/42/46	138/44/48	
44	65.2 3/9	69.2 3/9	72.8 3/9	76.2 3/6	77.1 3/6	
	126/31/36	131/36/40	135/40/43	139/42/45	139/44/48	
46	64.4 3/9	68.3 3/9	71.8 3/9	74.9 3/9	75.9 3/6	
	125/30/35	130/35/39	135/39/43	139/41/45	140/44/48	
48	63.5 3/9	67.4 3/9	70.8 3/9	73.6 3/9	74.8 3/6	
	125/30/34	130/34/38	135/38/41	139/41/44	141/44/48	
50	62.7 3/9	66.4 3/9	69.7 3/9	72.4 3/9	73.6 3/6	
	125/29/33	130/33/37	134/37/40	139/40/43	142/44/48	
52	61.9 3/9	65.5 3/9	68.7 3/9	71.0 2/3	72.5 3/6	
	125/28/32	129/32/36	134/36/39	139/40/43	143/44/48	
53	61.4 3/9	65.0 3/9	68.2 3/9	70.4 2/3	71.8 3/6	
	124/28/31	129/32/35	134/35/39	139/39/43	143/45/48	
55	60.6 3/9	64.1 3/9	67.1 3/9	69.0 2/3	70.4 2/3	
	124/27/31	129/31/34	134/34/38	138/39/42	143/44/47	
57	59.7 3/9	63.1 3/9	65.9 3/9	67.7 2/3	69.0 2/3	
	124/26/30	129/30/33	133/33/36	138/39/41	143/44/47	
59	58.8 3/9	62.2 3/9	64.6 3/3	66.3 2/3	67.6 2/3	
	123/25/29	128/29/32	133/33/36	138/38/41	143/43/46	
61	57.9 3/9	61.2 3/9	63.4 3/3	65.0 3/3	66.3 2/3	
	123/25/28	128/28/31	133/33/36	138/38/41	142/42/45	
63	57.1 3/9	60.2 3/9	62.2 3/3	63.7 3/3	64.9 2/3	
	123/24/27	127/27/30	133/33/36	138/38/40	142/42/44	
65	56.2 3/9	59.0 3/9	61.0 3/3	62.4 3/3	63.5 2/3	
	122/23/26	126/26/29	132/32/35	137/37/39	140/40/43	
66	55.8 3/9	58.4 3/9	60.3 3/3	61.7 3/3	62.8 2/3	
	122/22/25	126/26/29	131/31/33	136/36/39	140/40/42	

AIRBUS TRAINING A320 SIMULATOR FLIGHT CREW OPERATING MANUAL

TAKEOFF

2.02.40

P 9

QUICK REFERENCE TABLES

CONFIG	URATION 2	PR	ESSURE ALTITU	JDE = 2000 FT	FWD CG
TREF = 40 $^{\circ}$ C			DRY RUNWAY	MAX TO WEIGHT(1000KG) CODES
$TMAX = 51 \ ^{\circ}C$			SLOPE = 0 %	IAS(KT) : V1 / VR / V2	
TEMP.		CORRECT	ED RUNWAY LEN	GTH (M)	
(°C)	1750	2000	2250	2500	2750
-20	71.0 3/9	75.3 3/9	78.5 3/9	80.6 2/3	81.5 3/6
	133/37/42	138/41/45	143/44/48	149/50/55	149/53/58
-10	69.9 3/9	74.2 3/9	77.7 3/9	79.9 2/3	80.9 3/6
	132/36/41	137/40/44	141/43/47	147/48/53	147/51/56
0	68.8 3/9	73.0 3/9	76.8 3/9	79.2 3/6	80.2 3/6
	130/35/40	135/40/44	140/42/46	145/47/51	145/49/54
10	67.8 3/9	71.9 3/9	75.8 3/9	78.5 3/6	79.5 3/6
	129/34/38	134/39/43	138/41/45	143/45/49	143/48/52
20	66.7 3/9	70.8 3/9	74.7 3/9	77.8 3/6	78.7 3/6
	127/33/37	132/38/42	137/41/45	141/43/47	141/46/50
30	65.7 3/9	69.7 3/9	73.5 3/9	76.9 3/6	77.9 3/6
	126/32/36	131/36/41	136/40/44	140/42/46	139/44/48
40	64.7 3/9	68.7 3/9	72.4 3/9	76.0 3/6	77.2 3/6
	125/31/35	130/35/39	134/39/43	138/42/46	137/43/47
42	63.9 3/9	67.9 3/9	71.4 3/9	74.7 3/9	76.0 3/6
	125/30/34	129/35/39	134/39/42	138/41/45	138/43/47
44	63.1 3/9	67.0 3/9	70.4 3/9	73.5 3/9	74.8 3/6
	124/29/33	129/34/38	134/38/41	138/41/44	139/43/47
46	62.3 3/9	66.0 3/9	69.4 3/9	72.3 3/9	73.7 3/6
	124/29/33	129/33/37	133/37/40	138/40/43	140/43/47
48	61.4 3/9	65.2 3/9	68.4 3/9	71.1 3/9	72.5 3/6
	124/28/32	129/32/36	133/36/39	137/39/42	141/43/47
50	60.6 3/9	64.2 3/9	67.4 3/9	69.9 3/9	71.4 3/6
	123/27/31	128/31/35	133/35/38	137/38/41	142/43/47
51	60.2 3/9	63.8 3/9	66.9 3/9	69.2 2/3	70.7 3/6
	123/27/30	128/31/34	133/34/38	137/38/41	142/43/46
52	59.8 3/9	63.3 3/9	66.4 3/9	68.6 2/3	70.0 2/3
	123/26/30	128/30/34	132/34/37	137/38/41	142/43/46
54	58.9 3/9	62.4 3/9	65.3 3/9	67.3 2/3	68.6 2/3
	123/25/29	128/30/33	132/33/36	137/37/40	142/42/46
56	58.1 3/9	61.5 3/9	64.2 3/9	65.9 2/3	67.2 2/3
	122/25/28	127/29/32	132/32/35	137/37/40	142/42/45
	57.2 3/9	60.5 3/9	62.9 3/3	64.6 2/3	65.8 2/3
58	57.2 3/9 <u>122/24/27</u> 56.3 3/9	127/28/31	132/32/35	137/37/39	65.8 2/3 141/41/44 64.4 2/3
60	121/23/26	127/27/30	132/32/34	136/36/39	141/41/43
62	121/22/25	58.5 3/9 126/26/28	60.5 3/3 131/31/33	62.0 3/3 136/36/38	140/40/42
64	54.6 3/9	57.4 3/9	59.3 3/3	60.7 3/3	61.8 2/3
	121/21/24	125/25/27	130/30/33	135/35/37	139/39/41

AIRBUS TRAINING A320	TAKEOFF	2.02.40	P 10
SIMULATOR FLIGHT CREW OPERATING MANUAL	QUICK REFERENCE TABLES	SEQ 001	REV 20

INTENTIONALLY LEFT BLANK

AIRBUS TRAINING A320 SIMULATOR FLIGHT CREW OPERATING MANUAL

TAKEOFF

2.02.40

P 11

QUICK REFERENCE TABLES

CONFIG	URATION 3		PRESSURE AL	TITUDE = 0 FT	FWD CG
$TREF = 44 \ ^{\circ}C$			DRY RUNWAY	MAX TO WEIGHT(1000KG) CO	
$TMAX = 55 \ ^\circ C$			SLOPE = 0 %	IAS(KT) : V1 / VR / V2	
TEMP.		CORRECT	ED RUNWAY LENGTH (M)		
(°C)	1500	1750	2000	2250	2500
-20	71.2 3/3	76.1 3/3	79.3 2/3	81.6 2/3	83.4 2/3
	129/31/37	134/35/40	141/41/45	147/49/52	154/55/58
-10	70.2 3/3	75.1 3/3	78.6 2/3	81.0 2/3	82.8 3/6
	127/30/36	133/35/39	139/39/43	145/47/50	151/53/56
0	69.1 3/3	73.9 3/3	77.9 2/3	80.4 2/3	82.2 3/6
	126/29/34	131/34/39	137/37/41	143/45/48	149/51/55
10	68.1 3/3	72.8 3/3	77.1 3/3	79.7 2/3	81.6 3/6
	124/28/33	130/33/38	135/36/41	141/43/46	147/50/53
20	67.0 3/3	71.7 3/3	76.1 3/3	78.9 2/3	80.9 3/6
	123/27/32	128/32/37	133/35/40	139/41/45	145/48/51
30	66.0 3/3	70.7 3/3	75.0 3/3	78.1 2/3	80.2 3/6
	122/26/31	127/31/36	132/35/39	137/39/43	143/46/49
40	65.0 3/3	69.7 3/3	73.9 3/3	77.5 2/3	79.5 3/6
	120/25/30	126/30/35	131/34/39	135/37/42	140/44/47
44	64.6 3/3	69.3 3/3	73.4 3/3	77.2 2/3	79.2 3/6
	120/25/30	125/30/35	130/34/39	135/37/41	140/43/47
46	63.8 3/3	68.4 3/3	72.4 3/3	75.9 2/3	77.9 3/6
	120/24/29	125/29/34	130/33/38	135/36/40	140/43/46
48	63.0 3/3	67.5 3/3	71.3 3/3	74.5 2/3	76.5 2/3
	119/23/28	125/28/33	130/32/37	135/36/40	140/42/46
	62.2 3/3	66.6 3/3	70.3 3/3	73.1 2/3	75.1 2/3
50	62.2 3/3 119/22/27 61.3 3/3	66.6 3/3 <u>124/28/32</u> 65.7 3/3	130/32/36 69.2 3/3	73.1 2/3 135/36/40 71.7 2/3	75.1 2/3 140/42/45 73.6 2/3
52	01.3 3/3 119/22/26 60.5 3/3	<u> </u>	09.2 3/3 129/31/35 68.1 3/3	135/35/39 70.4 2/3	73.0 2/3 140/42/45 72.1 2/3
54	118/21/25	<u>124/26/30</u>	129/30/33	134/35/39	<u>140/41/45</u>
	60.0 3/3	64.2 3/3	67.5 3/3	69.8 2/3	71.4 2/3
55	118/21/25	<u>124/25/29</u>	129/29/33	134/35/38	<u>140/41/44</u>
	59.2 3/3	63.3 3/3	66.2 3/3	68.5 2/3	70.0 2/3
57	118/20/24	<u>124/24/28</u>	129/29/33	134/34/38	<u>140/40/44</u>
	58.3 3/3	62.3 3/3	64.9 3/3	67.1 3/3	68.6 2/3
59	117/19/23	<u>123/24/27</u>	129/29/32	134/34/38	<u>140/40/43</u>
	57.4 3/3	61.2 3/3	63.7 3/3	65.8 3/3	67.3 2/3
61	117/18/22	123/23/26	129/29/32	134/34/38	139/39/43
	* 56.5 3/3	60.1 3/3	62.5 3/3	64.5 3/3	65.9 2/3
63	* 116/17/21	122/22/25	129/29/32	134/34/37	139/39/42
65	* 55.4 3/3	58.9 3/3	61.3 3/3	63.2 3/3	64.6 2/3
65	* 116/17/21	120/20/24	128/28/31	133/33/36	138/38/41
67	* 54.1 3/3	57.8 3/3	60.1 3/3	61.9 3/3	63.2 3/3
67	* 116/17/21	<u>120/20/23</u>	127/27/30	132/32/35	137/37/40
69	* 53.5 3/3	57.2 3/3	59.5 3/3	61.3 3/3	62.5 2/3
68	* 116/17/21	120/20/23	126/26/29	131/31/34	136/36/39

AIRBUS TRAINING 🖳 A320

42

44

46

48

50

52

53

55

57

59

61

63

65

66

119/24/29

118/23/28

118/22/27

118/21/26

117/21/25

117/20/24

117/20/24

117/19/23

116/18/22

116/17/21

115/16/20

115/16/20

114/16/20

114/16/20

3/3

3/3

3/3

3/3

3/3

3/3

3/3

3/3

3/3

3/3

3/3

3/3

3/3

62.6

61.7

60.9

60.1

59.2

58.9

58.0

57.1

56.2

55.3

54.2

52.9

52.3

124/29/34

124/28/33

124/27/32

123/26/31

123/26/30

123/25/29

123/24/28

122/23/27

122/23/26

122/22/25

121/21/24

57.9 3/3

119/19/23

118/18/21

118/18/21

63.1

62.1

61.1

60.1

59.0

56.8

56.2

3/3

3/3

3/3

3/3

3/3

3/3

3/3

3/3

3/3

3/3

3/3

3/3

67.1

66.2

65.3

64.4

63.5

TAKEOFF

2.02.40

SEQ 300

P 12 **REV 34**

139/42/45

139/41/45

138/41/44

138/41/44

138/40/44

138/40/43

138/39/43

138/39/42

138/38/42

138/38/41

137/37/40

137/37/40

136/36/39

135/35/38

76.7

75.3

73.8

72.4

71.0

70.3

68.9

67.6

66.2

63.5

62.2

61.5

64.9

2/3

2/3

2/3

2/3

2/3

2/3

2/3

2/3

2/3

3/3

3/3

3/3

2/3

W	1.32		
Y	SIMULA'	FOR	
FLIGHT	CREW	OPERATING	MANUAL

QUICK REFERENCE TABLES

CONFIGURATION 3 PR		ESSURE ALTITU	UDE = 1000 FT FWD CG			
TREF = 42 °C			DRY RUNWAY	MAX TO WEIGHT	(1000KG) CODES	
$TMAX = 53 \ ^{\circ}C$			SLOPE = 0 %	IAS(KT) : V1 / VR / V2		
TEMP.		CORRECT	ED RUNWAY LEN	GTH (M)		
(°C)	1500	1750	2000	2250	2500	
-20	69.7 3/3	74.5 3/3	78.0 2/3	80.3 2/3	82.1 2/3	
	127/30/35	133/34/39	139/39/43	145/47/50	151/53/56	
-10	68.7 3/3	73.4 3/3	77.3 2/3	79.7 2/3	81.5 2/3	
	126/29/34	131/34/39	137/37/41	143/45/48	149/51/54	
0	67.6 3/3	72.3 3/3	76.4 3/3	79.0 2/3	80.9 2/3	
	124/28/33	130/33/38	135/36/40	141/43/46	147/49/53	
10	66.6 3/3	71.2 3/3	75.5 3/3	78.3 2/3	80.3 3/6	
	123/27/32	128/32/37	133/35/40	139/41/45	145/48/51	
20	65.5 3/3	70.2 3/3	74.3 3/3	77.5 2/3	79.6 3/6	
	122/26/31	127/31/36	132/35/39	137/39/43	143/46/49	
30	64.5 3/3	69.2 3/3	73.3 3/3	76.8 2/3	78.9 3/6	
	120/25/30	126/30/35	131/34/39	135/37/41	141/44/47	
40	63.6 3/3	68.2 3/3	72.3 3/3	76.1 3/3	78.2 3/6	
	119/24/29	124/29/34	129/33/38	134/36/40	139/42/46	
12	63.4 3/3	68.0 3/3	72.1 3/3	75.9 3/3	78.1 3/6	

129/33/38

129/32/37

129/31/36

128/30/35

128/30/33

128/29/32

128/28/32

128/28/31

128/28/31

127/27/31

127/27/30

126/26/29

125/25/28

125/25/28

71.0

70.0

69.0

68.0

66.9

66.4

63.9

62.6

61.4

60.2

59.1

58.5

65.2

3/3

3/3

3/3

3/3

3/3

3/3

3/3

3/3

3/3

3/3

3/3

3/3

3/3

133/36/40

133/35/39

133/34/39

133/34/38

133/34/38

133/33/37

133/33/37

133/33/36

133/33/36

133/33/36

132/32/36

132/32/35

131/31/33

130/30/33

74.5

73.2

71.9

70.6

69.3

67.4

66.1

64.7

63.4

62.2

60.9

60.3

68.7

3/3

2/3

2/3

2/3

2/3

2/3

2/3

3/3

3/3

3/3

3/3

3/3

3/3

AIRBUS TRAINING A320 SIMULATOR FLIGHT CREW OPERATING MANUAL

TAKEOFF

2.02.40

P 13

QUICK REFERENCE TABLES

CONFIG	URATION 3	PR	ESSURE ALTITU	JDE = 2000 FT	FWD CG
$TREF = 40 \ ^{\circ}C$		DRY RUNWAY	MAX TO WEIGHT(1000KG) CODES	
$TMAX = 51 \ ^{\circ}C$		SLOPE = 0 %	IAS(KT) : V1 / VR / V2		
TEMP.		CORRECT	ED RUNWAY LENGTH (M)		
(°C)	1500	1750	2000	2250	2500
-20	68.2 3/3	72.7 3/3	76.5 3/3	79.0 2/3	80.8 2/3
	126/29/34	132/34/38	137/37/41	143/44/48	149/51/54
-10	67.1 3/3	71.7 3/3	75.8 3/3	78.3 2/3	80.2 2/3
	124/28/33	130/33/37	135/36/40	141/42/46	147/49/52
0	66.1 3/3	70.7 3/3	74.8 3/3	77.6 2/3	79.6 2/3
	123/27/32	128/32/36	134/35/40	139/40/44	145/47/50
10	65.1 3/3	69.7 3/3	73.8 3/3	76.9 2/3	78.9 2/3
	122/25/31	127/31/35	132/35/39	137/38/43	143/45/49
20	64.1 3/3	68.6 3/3	72.7 3/3	76.1 2/3	78.2 3/6
	120/24/29	126/30/34	131/34/38	135/37/41	141/44/47
30	63.1 3/3	67.6 3/3	71.6 3/3	75.3 3/3	77.5 3/6
	119/23/28	124/29/33	129/33/37	134/36/40	139/42/45
40	62.1 3/3	66.7 3/3	70.7 3/3	74.4 3/3	76.8 3/6
	118/22/27	123/28/32	128/32/36	132/35/39	137/40/44
42	61.3 3/3	65.8 3/3	69.7 3/3	73.1 3/3	75.4 2/3
	117/22/26	123/27/31	128/31/35	132/34/39	137/40/43
44	60.5 3/3	64.9 3/3	68.7 3/3	71.8 3/3	73.9 2/3
	117/21/26	122/26/30	127/30/34	132/34/38	137/39/43
46	59.7 3/3	64.1 3/3	67.7 3/3	70.7 2/3	72.5 2/3
	117/20/25	122/25/29	127/29/33	132/33/37	137/39/43
48	58.9 3/3	63.2 3/3	66.7 3/3	69.4 2/3	71.2 2/3
	116/20/24	122/24/28	127/28/32	132/32/36	137/39/42
50	58.0 3/3	62.3 3/3	65.7 3/3	68.2 2/3	69.8 2/3
	116/19/23	122/24/28	127/28/31	132/32/36	137/38/42
51	57.6 3/3	61.8 3/3	65.2 3/3	67.5 2/3	69.2 2/3
	116/18/22	121/23/27	126/27/31	132/32/35	137/38/41
52	57.2 3/3	61.4 3/3	64.7 3/3	66.9 2/3	68.5 2/3
	115/18/22	121/23/27	126/27/30	132/32/35	137/38/41
54	56.4 3/3	60.5 3/3	63.5 3/3	65.6 2/3	67.2 2/3
	115/17/21	121/22/26	126/26/30	132/32/35	137/37/41
56	* 114/16/20	59.5 3/3 121/21/25	62.2 3/3 126/26/29	64.3 3/3 131/31/35	65.8 2/3 137/37/40
58	* 114/15/19	58.5 3/3 120/20/23	60.9 3/3 126/26/29	63.0 3/3 131/31/34	64.4 2/3 136/36/39
60	* 113/15/18	57.3 3/3 119/19/22	59.7 3/3 125/25/28	61.6 3/3 130/30/33	63.1 2/3 135/35/38
62	* 52.3 3/3 * 113/15/18 * 51.1 2/2	56.3 3/3 118/18/21	58.6 3/3 124/24/27	60.4 3/3 129/29/32	61.8 2/3 134/34/37
64	* 51.1 3/3	55.2 3/3	57.4 3/3	59.2 3/3	60.5 2/3
	* 113/15/18	117/17/20	123/23/26	128/28/31	134/34/36

AIRBUS TRAINING A320	TAKEOFF	2.02.40	P 14
SIMULATOR FLIGHT CREW OPERATING MANUAL	QUICK REFERENCE TABLES	SEQ 001	REV 20

INTENTIONALLY LEFT BLANK

INTRODUCTION

The following graphs enable the crew to quickly determine the takeoff performance out of an airport by positioning obstacles.

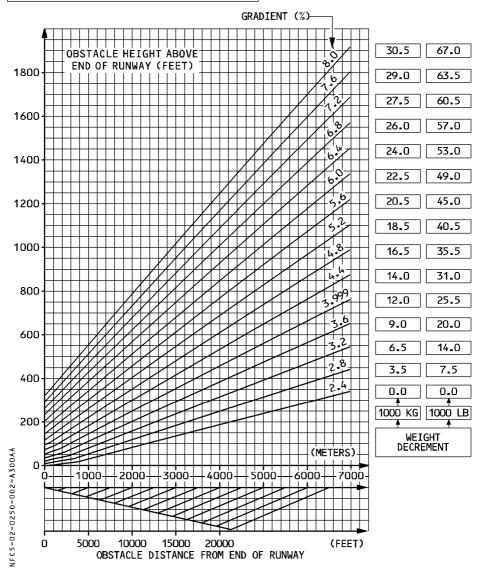
They must be used with the corresponding quick reference table so as to determine weight decrement and required gradient.

The net takeoff flight path and the associated weight decrement are conservative.

HOW TO PROCEED

- 1. Position the obstacle by entering its distance from end of runway and its height above the end of runway (No 35 feet margin is required as this is already included). In case of an ascending runway, increase the obstacle height by an additional value as indicated below each graph.
- 2. Read the associated weight correction. Interpolate if necessary. The second segment gradient is given for information only.
- R 3. Decrease the takeoff speeds by 1 knot per 1000 kg (0.5 kt per 1000 lb) weight decrement. Limit the final speeds to the minimum values as given on 2.02.25 p1.

Note : In case of tailwind, do not use the obstacle clearance graphs.


2.02.50

NET TAKEOFF FLIGHT PATH

SEQ 300 | REV 34

P 2

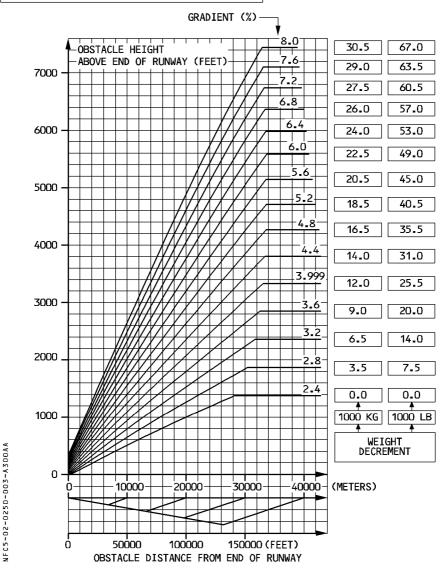
CLOSE OBSTACLE CLEARANCE CONF 1 + F

<u>Note</u> : In case of ascending runway, increase obstacle height by 50 feet per percent runway slope.

P 3

FLIGHT CREW OPERATING MANUAL

AIRBUS TRAINING


((

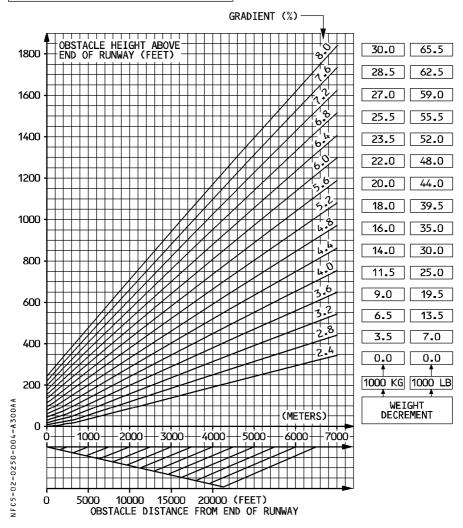
A320

NET TAKEOFF FLIGHT PATH

SEQ 300 | REV 34

REMOTE OBSTACLE CLEARANCE CONF 1 + F

<u>Note</u> : In case of ascending runway, increase obstacle height by 50 feet per percent runway slope.


2.02.50

SEQ 300 REV 34

P 4

Net takeoff flight path

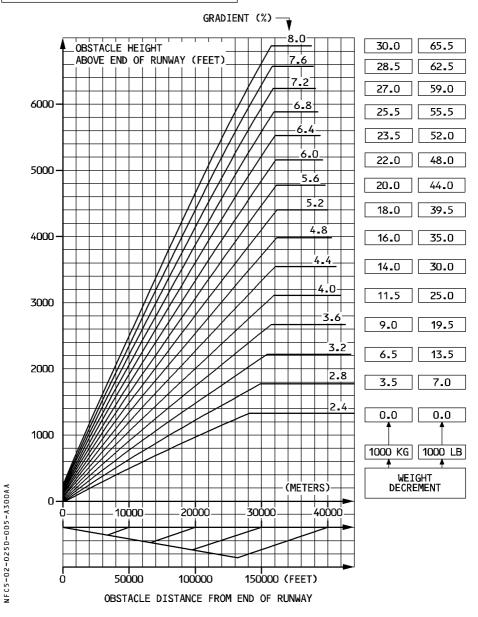
CLOSE OBSTACLE CLEARANCE CONF 2

<u>Note</u> : In case of ascending runway, increase obstacle height by 50 feet per percent runway slope.

SEQ 300

P 5 REV 34

FLIGHT CREW OPERATING MANUAL


AIRBUS TRAINING

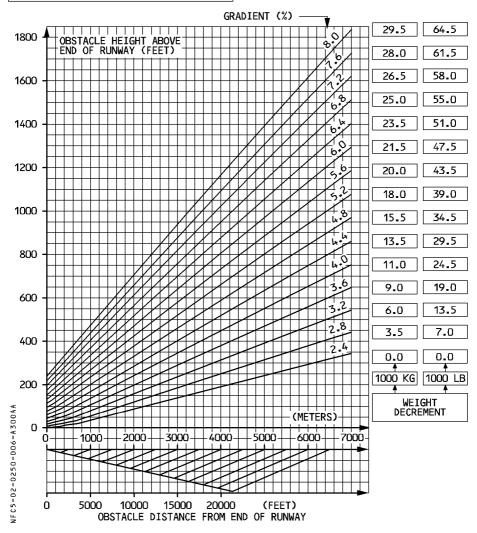
11

A320

NET TAKEOFF FLIGHT PATH

REMOTE OBSTACLE CLEARANCE CONF 2

<u>Note</u> : In case of ascending runway, increase obstacle height by 50 feet per percent runway slope.


2.02.50

NET TAKEOFF FLIGHT PATH

SEQ 300 | REV 34

P 6

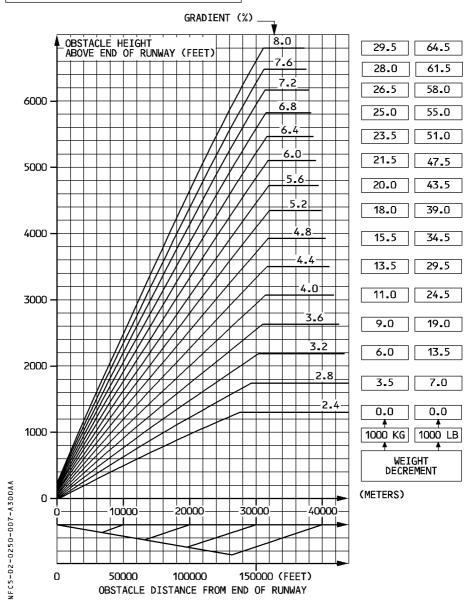
CLOSE OBSTACLE CLEARANCE CONF 3

<u>Note</u> : In case of ascending runway, increase obstacle height by 50 feet per percent runway slope.

P 7

FLIGHT CREW OPERATING MANUAL

AIRBUS TRAINING


11

A320

NET TAKEOFF FLIGHT PATH

SEQ 300 | REV 34

REMOTE OBSTACLE CLEARANCE CONF 3

<u>Note</u> : In case of ascending runway, increase obstacle height by 50 feet per percent runway slope.

AIRBUS TRAINING	0	LANDING PERFORMANCE	2.03.00	P 1
		CONTENTS	SEQ 001	REV 31
03.00	CONTENTS			
03.10	– Failure In – Actual La	I FLIGHT		
03.20		AUTOBRAKE SYSTEM		
R		ANDING WITH AUTOBRAKE		

GENERAL

ACTUAL LANDING DISTANCE

The actual landing distance is the distance measured between a point 50 feet above the runway threshold and the point where the complete stop of the aircraft is achieved. It assumes that :

- the approach speed is :
 - · VLS (1.23 VS of the configuration) for manual landing
 - \cdot VLS + 5 kt for CAT II/CAT III automatic landing.
- the pilot applies maximum braking and the antiskid system is operating.
- the ground spoilers are operating.
- It does not consider the use of reverse thrust.

REQUIRED LANDING DISTANCE

MANUAL LANDING

Regulation defines the required landing distance as the actual landing distance divided by 0.6, assuming the surface is dry.

If the surface is wet, the required landing distance must be at least 115 % of that for a dry surface.

- R For JAR-OPS operators, if the surface is contaminated, the required landing distance must
- R be at least the greater of the required landing distance on wet runway (see previous
- R paragraph) and 115 % of the landing distance determined in accordance with approved
- R contaminated landing distance data.

R AUTOMATIC LANDING

- R Regulation (JAR.AWO 142) defines the required landing distance for automatic landing as the actual landing distance in automatic landing multiplied by 1.15. This distance must be
- R retained for automatic landing whenever it is greater than the required landing distance in manual mode.

DISPATCH

The pilot must check before departure that the available runway length at destination is at least equal to the required landing distance for the forecasted landing weight. In case of aircraft system failure affecting landing distance known before the dispatch, the available runway length must be at least equal to the required landing distance with failure, i.e. the required landing distance without failure multiplied by the coefficient given in the

Flight Manual or the MMEL.

FAILURE IN FLIGHT

In case of an aircraft system failure occurring in flight and affecting the landing performance, the runway length to be considered for landing is the actual landing distance without failure multiplied by the landing distance coefficient associated with the failure. The coefficients are given in FCOM 3.02.80 and in the QRH.

The concept of required landing distance no longer applies.

RECOMMENDATIONS

For most cases of abnormal landing configuration, the increased actual landing distance does not exceed the required runway length for landing in normal configuration. R

However, the addition of several of these factors can very quickly lead to an overrun. Special notice should be taken of the runway condition. A slippery runway is the most common reason for overrun at landing. The combination of a slippery runway and a factor such as tailwind or an increase in approach speed should be avoided.

As far as possible, avoid the combination of any failure affecting the braking capability of the aircraft (spoilers, reversers) with landing on a contaminated runway, or prepare for it carefully by checking the available runway length against the forecasted landing distance. During a visual approach, use all means of monitoring the flight path ; use the ILS together with available visual aids such as VASI or PAPI. Monitor the approach speed along with the wind and ground speed, especially during final approach.

SEQ 305

ACTUAL LANDING DISTANCES

CONFIGURATION FULL

	ACTUAL LANDING DISTANCE (METERS)													
	WEIGHT (1	000 KG)	46	50	54	58	62	66	70	74	78			
	700	730	770	800	840	910	990	1080	1170					
	WET			1040	1110	1180	1240	1320	1390	1460				
		6.3 MM (1/4 INCH) WATER	1220	1300	1380	1480	1590	1700	1810	1930	2020			
RUNWAY	COVERED WITH	12.7 MM (1/2 INCH) Water	1190	1260	1340	1430	1530	1630	1730	1840	1930			
CONDITION		6.3 MM (1/4 INCH) SLUSH	1180	1260	1340	1420	1500	1580	1670	1770	1860			
		12.7 MM (1/2 INCH) Slush	1150	1220	1300	1370	1450	1530	1610	1700	1780			
		COMPACTED SNOW	1190	1270	1340	1410	1480	1550	1620	1700	1750			
		ICE	2570	2690	2820	2950	3090	3230	3370	3510	3620			

CORRECTIONS

	CORRECTION ON ACTUAL LANDING DISTANCE											
	dry	wet runway	runway covered with									
	runway		1/4 inch water	1/2 inch water	1/4 inch slush	1/2 inch slush	compacted snow	ice				
per 1000 ft above SL	+ 3 %	+ 3 % + 3 % + 4 % + 4 % + 5 % + 4 % + 3 % +										
per 10 kt headwind	No	o correction	for headw	ind due to	wind corre	ction on ap	proach spe	ed				
per 10 kt tailwind	+ 18 %	+ 21 %	+ 23 %	+ 21 %	+ 22 %	+ 20 %	+ 18 %	+ 31 %				
forward C.G.	+ 2 %	+ 3 %	+ 3 %	+ 3 %	+ 3 %	+ 3 %	+ 3 %	+ 3 %				
2 reversers operative	-3 % -8 % -10 % -10 % -9 % -8 % -8 % -24 %											
Per 5 kt speed increment (and no failure) add 8% (all runways)												

LANDING PERFORMANCE

2.03.10

LANDING

SEQ 305 REV 34

P 4

CONFIGURATION 3

	ACTUAL LANDING DISTANCE (METERS)												
	WEIGHT (1	46	50	54	58	62	66	70	74	78			
DRY				780	820	860	910	1000	1100	1200	1290		
	WET	1020	1090	1160	1240	1320	1400	1480	1570	1650			
		6.3 MM (1/4 INCH) WATER	1340	1430	1540	1660	1790	1930	2060	2200	2310		
RUNWAY	V COVERED WITH	12.7 MM (1/2 INCH) Water	1300	1380	1480	1590	1710	1830	1950	2080	2180		
CONDITION		6.3 MM (1/4 INCH) SLUSH	1300	1390	1470	1560	1650	1760	1890	2010	2110		
		12.7 MM (1/2 INCH) Slush	1250	1340	1420	1500	1590	1690	1800	1910	2000		
		COMPACTED SNOW	1300	1380	1460	1540	1620	1700	1780	1850	1910		
		ICE	2970	3110	3260	3410	3560	3720	3880	4040	4170		

CORRECTIONS

		C	ORRECTION	I ON ACTU	al landin	g distanc	E					
	dry	wet	runway covered with									
	runway	runway	1/4 inch water	1/2 inch water	1/4 inch slush	1/2 inch slush	compacted snow	ice				
per 1000 ft above SL	+ 3 %	- 3 % + 4 % + 4 % + 5 % + 5 % + 3 % + 4 %										
per 10 kt headwind	No	o correction	ı for headw	ind due to	wind correc	ction on ap	proach spe	ed				
per 10 kt tailwind	+ 18 %	+ 21 %	+ 24 %	+ 21 %	+ 22 %	+ 20 %	+ 17 %	+ 29 %				
forward C.G.	+ 2 %	+ 3 %	+ 3 %	+ 3 %	+ 3 %	+ 3 %	+ 3 %	+ 3 %				
2 reversers operative	perative -3 % -9 % -12 % -11 % -11 % -10 % -9 % -26 %											
Per 5 kt speed increment (and no failure) add 8% (all runways)												

REQUIRED LANDING DISTANCE

MANUAL LANDING

REQUIRED LANDING DISTANCE (METERS)									
WEIGHT (1000 KG) 46 50 54 58 62 66 70 74 78								78	
CONF 3	CONF 3 1250 1300 1360 1430 1520 1670 1830 1990 2140								
CONF FULL 1170 1220 1270 1330 1390 1510 1650 1800 1940									

Corrections on landing distances

Wind	per 10 kt tailwind add 19 %
	no correction for headwind due to wind correction on approach
	speed.
Airport elevation	per 1000 ft above sea level add 3 %.
Forward CG	add 2 %

AUTOMATIC LANDING

Determine the corrected required landing distance for manual landing from the data above.

The required landing distance for automatic landing is equal to the corrected required landing distance for manual landing except in the following case :

- In case of landing in Conf 3 with landing weight equal to or less than 65000 kg, it is equal to the corrected required landing distance for manual landing increased by 125 meters.
- In case of landing in Conf FULL with landing weight equal to or less than 65000 kg, it is equal to the corrected required landing distance for manual landing increased by 70 meters.

AIRBUS TRAINING	LANDING PERFORMANCE	2.03.10	P 6
SIMULATOR FLIGHT CREW OPERATING MANUAL	LANDING	SEQ 001	REV 32

INTENTIONALLY LEFT BLANK

GENERAL

The autobrake system is designed to help the pilot in case of :

- $\cdot \text{ aborted takeoff or }$
- \cdot landing on short runways or
- · operation with low visibility weather conditions

Furthermore, it ensures a straight roll-out and optimizes the landing distance on contaminated runways provided the contamination is evenly distributed.

The following tables cover :

- · dry runway
- wet runway
- · runway covered with water, slush or compacted snow
- · icy runway
- At landing, select the braking mode according to :
- · runway length
- · configuration
- · runway condition
- A correction is necessary :
- · if landing is not performed at sea level
- · if reverse thrust is used
- · in windy conditions
- · for forward CG (A320-200 only)

LANDING PERFORMANCE

USE OF THE AUTOBRAKE SYSTEM

P 2

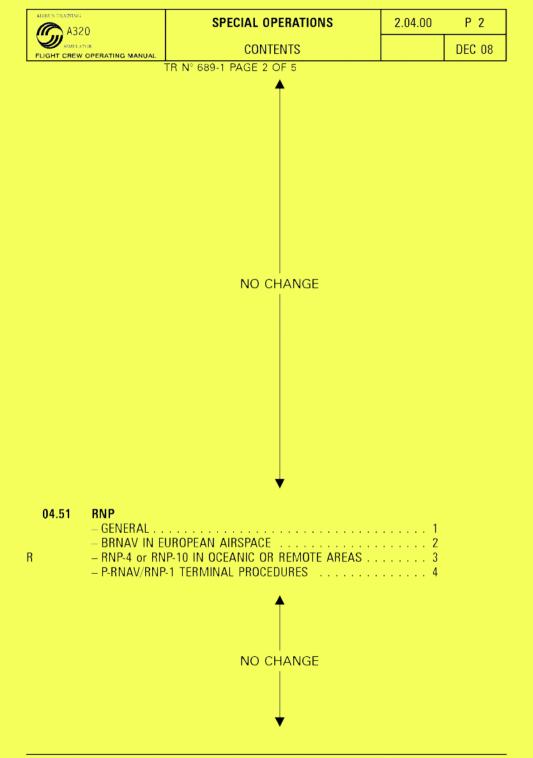
SEQ 305 **REV 34**

MANUAL LANDING WITH AUTOBRAKE

CONFIGURATION 3

	AC1		CORRECTIONS (%) ON LANDING DISTANCE								
	WEIGHT (1000 K	G)	40	50	60	70	80	PER 1000FT	2 REV	PER 10KT TAIL	FWD
R	RUNWAY CONDITION MODE		70	50		10		ABOVE SL	OP	WIND	CG
DRY MED LOW		970 1430	1080 1620	1230 1860	1390 2110	1540 2360	+ 3 + 3	0 0	+ 16 + 18	+ 2 + 2	
	WET MED LOW		1010 1430	1150 1620	1340 1860	1540 2110	1740 2360	+ 4 + 3	-4 -0	+ 21 + 18	+ 3 + 2
c	6.3 MM (1/4 INCH) WATER	MED Low	1280 1420	1470 1620	1750 1880	2080 2200	2400 2520	+ 4 + 4	-12 -2	+ 23 + 19	+ 3 + 2
0 V E	12.7 MM (1/2 INCH) Water	MED Low	1240 1390	1420 1590	1670 1840	1970 2130	2260 2420	+ 4 + 4	-11 -1	+ 21 + 17	+ 3 + 2
R E D	6.3 MM (1/4 INCH) SLUSH	MED Low	1240 1380	1420 1570	1640 1820	1900 2070	2190 2340	+ 5 + 5	-10 0	+ 22 + 17	+ 3 + 2
	12.7 MM (1/2 INCH) Slush	MED Low	1200 1350	1370 1550	1580 1790	1810 2030	2070 2280	+ 5 + 4	-10 0	+ 20 + 16	+ 3 + 2
W	COMPACTED SNOW	MED Low	1270 1420	1430 1610	1620 1860	1820 2110	2010 2340	+ 4 + 4	_9 0	+ 17 + 17	+ 3 + 2
Ĥ	ICE	MED LOW	2850 2890	3130 3170	3510 3540	3900 3940	4270 4310	+ 4 + 4	-25 -25	+ 32 + 31	+ 4 + 3

CONFIGURATION FULL


	ACT	CORRECTIONS (%) ON LANDING DISTANCE									
	WEIGHT (1000 KG	G)	40	50	60	70	80	PER 1000FT	2 REV	PER 10KT TAIL	FWD
R	RUNWAY CONDITION MODE		Ť	3		10		ABOVE SL	OP	WIND	CG
DRY MED LOW		950 1390	1010 1490	1150 1710	1290 1950	1430 2170	+ 3 + 3	0	+ 16 + 18	+ 2 + 2	
WET MED LOW			960 1390	1040 1490	1200 1710	1380 1950	1550 2170	+ 4 + 3	0 0	+ 20 + 18	+ 3 + 2
c	6.3 MM (1/4 INCH) WATER	MED LOW	1230 1390	1340 1500	1550 1740	1830 1990	2100 2250	+ 4 + 4	-10 -1	+ 23 + 18	+ 3 + 2
V E	12.7 MM (1/2 INCH) Water	MED LOW	1190 1360	1290 1480	1490 1710	1750 1940	2000 2190	+ 4 + 4	_9 0	+ 21 + 16	+ 3 + 2
R E D	6.3 MM (1/4 INCH) Slush	MED LOW	1190 1350	1290 1460	1490 1690	1700 1920	1930 2140	+ 5 + 4	_9 0	+ 21 + 16	+ 3 + 2
	12.7 MM (1/2 INCH) Slush	MED LOW	1150 1320	1250 1430	1440 1660	1640 1880	1850 2100	+ 5 + 4	-8 0	+ 19 + 16	+ 3 + 2
W I T	COMPACTED SNOW	MED LOW	1210 1380	1300 1490	1490 1720	1670 1950	1830 2170	+ 4 + 4	-8 0	+ 18 + 18	+ 3 + 2
Ĥ	ICE	MED LOW	2530 2560	2710 2740	3040 3070	3390 3420	3710 3710	+ 4 + 4	-23 -23	+ 33 + 33	+ 3 + 3

Note : - Max mode is not recommended at landing.

- Per 5 knot speed increment (and no failure) add 8 % (all runways). - No correction for headwind due to wind correction on approach speed.

AIRBUS TRAINING		SPECIAL OPERATIONS	2.04.00	P 1
	ATOR V OPERATING MANUAL	CONTENTS	SEQ 001	REV 39
04.00	CONTENTS			
04.10	 GENERAL DEFINITION: OPERATION. TAKEOFF PE TAKEOFF FF WET RUNY 6.3 MM (1 12.7 MM (1 12.7 MM (1 12.7 MM (1 2.7 MM (1 SPRAY PATT CROSSWINE TAXIING TAKEOFF LANDING 	AL CONDITIONS REFORMANCE OM A : VAY /4 INCH) WATER COVERED RUNWAY 1/2 INCH) WATER COVERED RUNWAY /4 INCH) SLUSH COVERED RUNWAY 1/2 INCH) SLUSH COVERED RUNWAY ED SNOW COVERED RUNWAY		
04.15	FERRY FLIGH	FWITH NO SLATS		
04.20	- General - Oxygen Reo - Flight Plan - Systems .	DUT CABIN PRESSURIZATION		
04.25 R R	- Limitations - Procedure - Performan - Gross Ceil	s	1 1 4	
04.30	HIGH ALTITU	DE OPERATION ⊲		

AIRBUS TRAINING	0	SPECIAL OPERATIONS 2.04.0)0	P 2
	-	CONTENTS SEQ 1	02	REV 40
04.35	 INTRODUCT ENGINE FAIL DEPRESSUR 	Mountainous Area Ion Lure Ization	. 1 . 2	
04.40	 General . Operation, Dispatch C Diversion Procedure 	ANGE OPERATIONS	.1 .3 .8 .9	
04.45	 GENERAL . ENGINE PAF CROSSBLEE TAKEOFF PF 	RMIX TYPE 1 ⊲ AMETERS D ENG START OCEDURE PONSE IGHT	. 1 . 1 . 1 . 1	
04.45	- General - Engine Par - Takeoff Pr - Engine Res	RMIX TYPE 2 ⊲ AMETERS	.3 .3 .3	
04.51	- RNP-10 IN O - P-RNAV/RNP	UROPEAN AIRSPACE	.2 .3 .4	
04.60		N NARROW RUNWAYS	. 1	

GENERAL

This section presents the recommendations of Airbus Industrie for operations from wet runways or from runways which are covered with contaminants such as standing water, slush or snow.

___ CAUTION _____ Take off from an icy runway is not recommended.

DEFINITIONS

B 4 4 4 B	
DAMP	: A runway is damp when the surface is not dry, but when the
	water on it does not give it a shiny appearance.
WET	: A runway is considered as wet when the surface has a shiny
	appearance due to a thin layer of water. When this layer does
	not exceed 3 mm depth, there is no substantial risk of
	hydroplaning.
STANDING WATER	: is caused by heavy rainfall and /or insufficient runway drainage
	with a depth of more than 3 mm.
SLUSH	: is water saturated with snow which spatters when stepping
	firmly on it. It is encountered at temperatures around 5° C and
	its density is approximately 0.85 kg/liter (7.1 lb/US GAL).
Wet snow	: is a condition where, if compacted by hand, snow will stick
	together and tend to form a snowball. Its density is
	approximately 0.4 kg/liter (3.35 lb/US GAL).
DRY SNOW	: is a condition where snow can be blown if loose, or if
	compacted by hand, will fall apart again upon release. Its
	density is approximately 0.2 kg/liter (1.7 lb/US GAL).
COMPACTED SNOW	: is a condition where snow has been compressed (a typical
	friction coefficient is 0.2).
ICY	: is a condition where the friction coefficient is 0.05 or below.
The conference of all	a in this shorter has been divided into two estassion which are

The performance given in this chapter has been divided into two categories which are determined by the depth of the contaminant. For each of these categories an equivalent depth of contaminant has been defined for which the performance deterioration is the same.

1. WET RUNWAY and EQUIVALENT

Equivalent of a wet runway is a runway covered with or less than :

- 3 mm (0.12 inch) slush
- 3 mm (0.12 inch) water
- 4 mm (0.16 inch) wet snow
- 15 mm (0.59 inch) dry snow

AIRBUS TRAINING A320 SIMULATOR FLIGHT CREW OPERATING N

FLUID CONTAMINATED RUNWAY

2. CONTAMINATED RUNWAY

R An equivalence between depth of slush and snow has been defined :

- 12.7 mm (1/2 inch) wet snow is equivalent to 6.3 mm (1/4 inch) slush
- R 25.4 mm (1 inch) wet snow is equivalent to 12.7 mm (1/2 inch) slush
 - 50.8 mm (2 inches) dry snow is equivalent to 6.3 mm (1/4 inch) slush
- R 101.6 mm (4 inches) dry snow is equivalent to 12.7 mm (1/2 inch) slush

Note : 1. On a damp runway no performance degradation should be considered.

2. It is not recommended to take off from a runway covered with more than 4 inches of dry snow or 1 inch of wet snow.

OPERATIONAL CONDITIONS

<u>Performance penalties for takeoff as published in this section are computed with the following assumptions :</u>

- The contaminant is in a layer of uniform depth and density over the entire length of the runway.
- Antiskid and spoilers are operative.
- The friction coefficient is based on studies and checked by actual tests.
- The screen height at the end of takeoff segment is 15 feet, not 35 feet.

In addition, for contaminated runways only :

- There is drag due to rolling resistance of the wheels.
- There is drag due to spray on the airframe and gears.
- Reverse thrust is used for the deceleration phase.
- Maximum thrust is used for takeoff.

Note : The net flight path clears obstacles by 15 feet instead of 35 feet.

TAKEOFF PERFORMANCE

_ CAUTION

The method is based on the use of the RTOW charts established at optimum V2/VS and optimum V1/VR. In addition, when applying corrections for a wet runway, the RTOW charts should also have been established with V1 min (minimum V1 of the V1 range). The method should not be used with takeoff charts computed for other conditions. All tables have been established for TOGA (and Flexible Takeoff for wet runways). Do not use them for Derated thrust.

Correct the determined maximum takeoff weight on dry runway to take into account QNH and bleed effects, then apply the corrections given on the following pages.

- <u>Note</u> : 1. The results obtained with this method may be different from the influence given at the bottom of the RTOW chart.
 - 2. On contaminated runway, in some cases, no MTOW can be determined with this method (box dashed below a given weight). A specific RTOW chart must then be computed.
 - 3. The published corrections are valid for charts calculated with forward CG and basic CG.

TAKEOFF FROM A WET RUNWAY

- 1. Determine the maximum takeoff weight or flexible temperature and associated speeds on dry runway.
- 2. Two sets of tables are given depending on the use of thrust reversers and the presence of clearway. Select the table to use as applicable to your case.
 - The runway length in the table corresponds to the available takeoff run (TORA)
- 3. Apply the corrections shown in the table to the maximum takeoff weight or flexible temperature and associated speeds determined on dry runway.
- 4. Check that takeoff speeds are greater than the minimum values shown on the RTOW chart.

If one or more speeds are lower than these minimum values, apply the following procedure :

- Actual TOW = maximum TOW
 - If V1 is lower than minimum V1 (V1 limited by VMCG), take this last value as V1 and further decrease weight by 3000 kg (6600 lb) per kt difference between both values. Check that VR and V2 are higher or equal to minimum values.
 - · If VR or/and V2 falls below the minimum values, takeoff is not possible.
- Actual TOW lower than maximum TOW
 - \cdot If V1 corresponding to actual TOW is lower than the minimum V1 (V1 limited by VMCG) :
 - \star If maximum TOW has a V1 equal to or above minimum V1, retain minimum V1 as V1 and decrease the flexible temperature by 4°C per knot difference between them.
 - * In the rare case when the V1 corresponding to maximum TOW falls below the minimum V1, decrease maximum TOW by 3000 kg (6600 lb) per knot difference between them. Limit the actual TOW to the value found after this decrement. Take V1 equal to minimum V1 and decrease the flexible temperature by 4°C per knot difference between this last value and the V1 corresponding to the actual TOW. Check that VR and V2 are higher than or equal to the minimum values.
 - If VR or V2 corresponding to actual TOW falls below the minimum values, and if VR and V2 corresponding to maximum TOW are above the minimum values, retain the minimum speed value for VR and V2.
- 5. Check that V2 is above the minimum V2 value due to VMU. (refer to 2.02.25).
- 6. Check that the corrected flexible temperature is higher than OAT and Tref.
- <u>Note</u> : Do not extrapolate below the shortest runway length provided in the table. • If no minimum speed value is available, use the conservative values provided on 2.02.25.

SPECIAL OPERATIONS

2.04.10

FLUID CONTAMINATED RUNWAY

SEQ 348 | REV 34

Ρ3

NO THRUST REVERSERS OPERATIVE (NO CLEARWAY)

TAKEOFF CONFIGURATION		1 +	F		2			3	
RUNWAY LENGTH (m) (ft)	2500 8000	3000 10000	3500 11500 and above	2000 6500	2500 8000	3000 10000 and above	1750 5750	2000 6500	2500 8000 and above
FLEX TO Temperature decrement (°C)	8	5	3	8	6	2	6	6	2
MAX TO Weight decrement (1000 kg) (1000 lb)	2.6 5.8	2.0 4.5	1.3 2.9	2.5 5.6	2.2 4.9	0.7 1.6	2.1 4.7	2.1 4.7	0.7 1.6
V1 decrement (kt)	15	14	14	16	14	14	14	15	13
VR and V2 decrement (kt)	2	1	1	2	1	2	1	2	0

ALL THRUST REVERSERS OPERATIVE (NO CLEARWAY)

TAKEOFF CONFIGURATION		1 +	F		2			3	
RUNWAY LENGTH (m) (ft)	2500 8000	3000 10000	3500 11500 and above	2000 6500	2500 8000	3000 10000 and above	1750 5750	2000 6500	2500 8000 and above
FLEX TO Temperature decrement (°C)	3	2	0	3	1	0	2	1	1
MAX TO Weight decrement (1000 kg) (1000 lb)	1.0 2.3	0.6 1.4	0.0 0.0	0.8 1.8	0.3 0.7	0.0 0.0	0.6 1.4	0.2 0.5	0.1 0.3
V1 decrement (kt)	9	9	9	10	8	9	10	9	8
VR and V2 decrement (kt)	0	0	0	0	0	0	0	0	0

SPECIAL OPERATIONS

FLUID CONTAMINATED RUNWAY

2.04.10

SEQ 348 | REV 34

P 4

NO THRUST REVERSERS OPERATIVE (WITH CLEARWAY)

TAKEOFF CONFIGURATION		1 +	F		2			3	
RUNWAY LENGTH (m) (ft)	2500 8000	3000 10000	3500 11500 and above	2000 6500	2500 8000	3000 10000 and above	1750 5750	2000 6500	2500 8000 and above
FLEX TO Temperature decrement (°C)	15	9	9	14	11	4	15	12	5
MAX TO Weight decrement (1000 kg) (1000 lb)	5.4 12.0	4.1 9.1	3.8 8.4	4.6 10.2	4.2 9.3	1.6 3.6	4.5 10.0	4.5 10.0	2.2 4.9
V1 decrement (kt)	14	15	15	14	14	15	13	13	14
VR and V2 decrement (kt)	4	3	6	4	4	6	3	4	5

ALL THRUST REVERSERS OPERATIVE (WITH CLEARWAY)

TAKEOFF CONFIGURATION		1 +	F		2			3	
RUNWAY LENGTH (m) (ft)	2500 8000	3000 10000	3500 11500 and above	2000 6500	2500 8000	3000 10000 and above	1750 5750	2000 6500	2500 8000 and above
FLEX TO Temperature decrement (°C)	11	5	2	10	8	3	11	9	3
MAX TO Weight decrement (1000 kg) (1000 lb)	3.9 8.6	2.3 5.1	0.9 2.0	3.3 7.3	3.1 6.9	1.0 2.3	3.3 7.3	3.3 7.3	1.3 2.5
V1 decrement (kt)	9	10	12	9	9	10	8	9	9
VR and V2 decrement (kt)	3	2	3	3	3	4	2	2	4

SEQ 348

P 5 REV 38

Fluid Contaminated Runway

TAKEOFF FROM A 6.3 MM (1/4 INCH) WATER COVERED RUNWAY

- Determine maximum takeoff weight on dry runway.
- Apply the following weight decrement versus takeoff configuration, runway length and clearway availability to determine a corrected weight.

R

TAKEOFF CONFIGURATION		CON	IF 1 + I	F		CONF	2		CONF	3
RWY LENGTH (m) (ft)	2500 8000	3000 10000	3500 11500	4000 13000 and above	2000 6500	2500 8000	3000 10000 and above	1750 5750	2000 6500	2500 8000 and above
∆WEIGHT (1000 kg) With clearway Without clearway	12.8 10.5	11.7 10.1	9.8 9.0	9.8 9.0	13.9 11.1	13.2 11.1	11.4 10.4	14.9 11.4	14.5 11.8	13.1 11.8

Enter the following tables with the corrected weight to determine MTOW then determine takeoff speeds associated with actual TOW.

R

	CORRECTED WEIGHT (1000 kg)	<55.2	55.2	56	58							58 t	o 78						
C	MTOW (1000 kg)	-	46.7	50	58					EQU	AL TO	CORF	RECTE	d We	GHT				
0 N																			
F	ACTUAL WEIGHT (1000 kg)	<46.7	46.7	48	50	52	54	56	58	60	62	64	66	68	70	72	74	76	78
1+	V2 (kt IAS)	124	124	126	129	131	134	136	138	141	143	145	148	150	152	155	157	159	161
F	VR (kt IAS)	121	121	123	126	128	131	133	135	138	140	142	145	147	149	152	154	156	158
	V1 (kt IAS)	117	117	117	117	117	117	117	117	120	122	124	127	129	131	134	136	138	140

R

	CORRECTED WEIGHT (1000 kg)	<56.8	56.8	58	59							59 t	o 78						
	MTOW (1000 kg)	-	48.7	55	59					EQU	AL TO	CORF	RECTE	d Wei	GHT				
0 0																			
N	ACTUAL WEIGHT (1000 kg)	<48.7	48.7	50	52	54	56	58	59	60	62	64	66	68	70	72	74	76	78
F 2	V2 (kt IAS)	125	125	127	129	132	134	137	138	139	141	143	146	148	150	153	155	157	159
-	VR (kt IAS)	119	119	121	123	126	128	131	132	133	135	137	140	142	144	147	149	151	153
	V1 (kt IAS)	115	115	115	115	115	115	115	115	116	118	120	123	125	127	130	132	134	136

	CORRECTED WEIGHT (1000 kg)	<57.8	57.8	58	60						6	0 to 7	8					
l c	MTOW (1000 kg)	-	48	49	60					equal	TO CI	ORREC	TED V	VEIGHT	Г			
lö																		
N	ACTUAL WEIGHT (1000 kg)	<48	48	50	52	54	56	58	60	62	64	66	68	70	72	74	76	78
F	V2 (kt IAS)	123	123	126	128	131	133	135	138	140	142	145	147	149	151	153	155	157
ľ	VR (kt IAS)	118	118	121	123	126	128	130	133	135	137	140	142	144	146	148	150	152
	V1 (kt IAS)	114	114	114	114	114	114	114	114	116	118	121	123	125	127	129	131	133

FLUID CONTAMINATED RUNWAY

SEQ 348 | REV 38

P 6

TAKEOFF FROM A 12.7 MM (1/2 INCH) WATER COVERED RUNWAY

- Determine maximum takeoff weight on dry runway.
- Apply the following weight decrement versus takeoff configuration, runway length and clearway availability to determine a corrected weight.

R

TAKEOFF CONFIGURATION		CON	IF 1 + I	F		CONF	2		CONF	3
RWY LENGTH (m) (ft)	2500 8000	3000 10000	3500 11500	4000 13000 and above	2000 6500	2500 8000	3000 10000 and above	1750 5750	2000 6500	2500 8000 and above
∆WEIGHT (1000 kg) With clearway Without clearway	16.7 14.4	15.7 14.1	12.9 12.0	10.4 9.6	17.3 13.3	16.6 14.5	15.5 14.5	17.5 14.0	17.5 14.8	16.3 15.0

Enter the following tables with the corrected weight to determine MTOW then determine takeoff speeds associated with actual TOW.

R

	CORRECTED WEIGHT (1000 kg)	<51.4	51.4	52	52.7							52	.7 to	78						
C O	MTOW (1000 kg)	-	46.7	49	52.7					EC	JUAL	то со	RREC	TED \	NEIGI	ΗT				
N																				
F	ACTUAL WEIGHT (1000 kg)	<46.7	46.7	48	50 52 52.7 54 56 58 60 62 64 66 68 70 72 74 76 78															
1+	V2 (kt IAS)	124	124	126	129	131	132	134	136	138	141	143	145	148	150	152	155	157	159	161
F	VR (kt IAS)	122	122	124	127	129	130	132	134	136	139	141	143	146	148	150	153	155	157	159
	V1 (kt IAS)	117	117	117	117	117	117	119	121	123	126	128	130	133	135	137	140	142	144	146

R

	CORRECTED WEIGHT (1000 kg)	<52.9	52.9	54							54 t	o 78						
	MTOW (1000 kg)	-	48	54					EQI	JAL TO	CORF	RECTEI) Wei	GHT				
0																		
Ň	ACTUAL WEIGHT (1000 kg)	<48	48	50 52 54 56 58 60 62 64 66 68 70 72 74 76 78														
F	V2 (kt IAS)	124	124	127	129	132	134	137	139	141	143	146	148	150	153	155	157	159
-	VR (kt IAS)	119	119	122	124	127	129	132	134	136	138	141	143	145	148	150	152	154
	V1 (kt IAS)	115	115	115	115	115	117	120	122	124	126	129	131	133	136	138	140	142

	CORRECTED WEIGHT (1000 kg)	<54	54	56							56 t	o 78						
<u>ر</u>	MTOW (1000 kg)	-	48	56					EQL	JAL TC	CORF	rectei) WEI	GHT				
0																		
N	ACTUAL WEIGHT (1000 kg)	<48	48	50	52	54	56	58	60	62	64	66	68	70	72	74	76	78
F 3	V2 (kt IAS)	123	123	126	128	131	133	135	138	140	142	145	147	149	151	153	155	157
3	VR (kt IAS)	118	118	121	123	126	128	130	133	135	137	140	142	144	146	148	150	152
	V1 (kt IAS)	114	114	114	114	114	114	116	119	121	123	126	128	130	132	134	136	138

P 7 **REV 38** SEQ 348

FLUID CONTAMINATED RUNWAY

TAKEOFF FROM A 6.3 MM (1/4 INCH) SLUSH COVERED RUNWAY

- Determine maximum takeoff weight on dry runway.
- Apply the following weight decrement versus takeoff configuration, runway length and clearway availability to determine a corrected weight.

R

TAKEOFF CONFIGURATION		CON	IF 1 +	F		CONF	[:] 2		CONF	[:] 3
RWY LENGTH (m) (ft)	2500 8000	3000 10000	3500 11500	4000 13000 and above	2000 6500	2500 8000	3000 10000 and above	1750 5750	2000 6500	2500 8000 and above
∆WEIGHT (1000 kg) With clearway Without clearway	13.2 10.9	11.8 10.2	9.8 9.0	9.8 9.0	14.5 11.7	13.8 11.7	11.6 10.6	15.2 11.5	15.2 12.5	13.9 12.6

Enter the following tables with the corrected weight to determine MTOW then determine takeoff speeds associated with actual TOW.

R

	CORRECTED WEIGHT (1000 kg)	<53.2	53.2	54	55							5	5 to 7	8						
C O	MTOW (1000 kg)	-	46.7	51	55					EC	JUAL	то со	ORREC	TED \	NEIGI	ΗT				
N																				
F	ACTUAL WEIGHT (1000 kg)	<46.7	46.7	48	50	52	54	55	56	58	60	62	64	66	68	70	72	74	76	78
1	V2 (kt IAS)	124	124	126	129	131	134	135	136	138	141	143	145	148	150	152	155	157	159	161
F	VR (kt IAS)	122	122	124	127	129	132	133	134	136	139	141	143	146	148	150	153	155	157	159
	V1 (kt IAS)	117	117	117	117	117	117	117	118	120	123	125	127	130	132	134	137	139	141	143

R

	CORRECTED WEIGHT (1000 kg)	<54.8	54.8	56	56.7							56.7	to 78						
	MTOW (1000 kg)	-	48	53	56.7					EQU	AL TO	CORF	RECTE	d Wei	GHT				
0																			
Ν	ACTUAL WEIGHT (1000 kg)	<48	48	50	52	54	56	56.7	58	60	62	64	66	68	70	72	74	76	78
F 2	V2 (kt IAS)	124	124	127	129	132	134	135	137	139	141	143	146	148	150	153	155	157	159
2	VR (kt IAS)	119	119	122	124	127	129	130	132	134	136	138	141	143	145	148	150	152	154
	V1 (kt IAS)	115	115	115	115	115	115	115	117	119	121	123	126	128	130	133	135	137	139

	CORRECTED WEIGHT (1000 kg)	<56.3	56.3	58	58.7							58.7	to 78						
c	MTOW (1000 kg)	-	48	55	58.7					EQU	AL TO	CORF	RECTE	d We	IGHT				
lõ																			
N	ACTUAL WEIGHT (1000 kg)	<48	48	50	52	52 54 56 58 58.7 60 62 64 66 68 70 72 74 76 78										78			
F 3	V2 (kt IAS)	123	123	126	128	131	133	135	136	138	140	142	145	147	149	151	153	155	157
ľ	VR (kt IAS)	118	118	121	123	126	128	130	131	133	135	137	140	142	144	146	148	150	152
	V1 (kt IAS)	114	114	114	114	114	114	114	114	116	118	120	123	125	127	129	131	133	135

FLUID CONTAMINATED RUNWAY

SEQ 348 REV 38

P 8

TAKEOFF FROM A 12.7 MM (1/2 INCH) SLUSH COVERED RUNWAY

- Determine maximum takeoff weight on dry runway.
- Apply the following weight decrement versus takeoff configuration, runway length and clearway availability to determine a corrected weight.

R

TAKEOFF CONFIGURATION		CON	IF 1 + I	F		CONF	2		CONF	3
RWY LENGTH (m) (ft)	2500 8000	8000 10000 11500		4000 13000 and above	2000 6500	2500 8000	3000 10000 and above	1750 5750	2000 6500	2500 8000 and above
∆WEIGHT (1000 kg) With clearway Without clearway	18.9 17.3	18.9 17.3	16.3 15.4	15.4 14.6	18.7 14.7	18.7 16.6	17.9 16.9	18.9 15.4	18.4 15.7	18.3 17.0

Enter the following tables with the corrected weight to determine MTOW. Then determine takeoff speeds associated with actual TOW.

R

	CORRECTED WEIGHT (1000 kg)	<47.8	47.8	48							4	8 to 7	8						
C O	MTOW (1000 kg)	-	46.7	48					E	QUAL	to co	DRREC	TED \	VEIGH	T				
N																			
F	ACTUAL WEIGHT (1000 kg)	<46.7	46.7	48	50	52	54	56	58	60	62	64	66	68	70	72	74	76	78
1 +	V2 (kt IAS)	124	124	126	129	131	134	136	138	141	143	145	148	150	152	155	157	159	161
F	VR (kt IAS)	123	123	125	128	130	133	135	137	140	142	144	147	149	151	154	156	158	160
	V1 (kt IAS)	117	117	117	120	122	125	127	129	132	134	136	139	141	143	146	148	150	152

R

	CORRECTED WEIGHT (1000 kg)	<49.5	49.5	50							5	0 to 7	8						
<u>_</u>	MTOW (1000 kg)	-	47	50					E	QUAL	TO CO	DRREC	ted V	VEIGH	Т				
0																			
N	ACTUAL WEIGHT (1000 kg)	<47	47	48	50	52	54	56	58	60	62	64	66	68	70	72	74	76	78
F 2	V2 (kt IAS)	123	123	124	127	129	132	134	137	139	141	143	146	148	150	153	155	157	159
-	VR (kt IAS)	119	119	120	123	125	128	130	133	135	137	139	142	144	146	149	151	153	155
	V1 (kt IAS)	115	115	115	115	117	120	122	125	127	129	131	134	136	138	141	143	145	147

	CORRECTED WEIGHT (1000 kg)	<51	51	52							52 t	o 78						
c	MTOW (1000 kg)	-	48	52					EQL	JAL TC	CORF	RECTEI) WEI	GHT				
0																		
N	ACTUAL WEIGHT (1000 kg)	<48	48	50	50 52 54 56 58 60 62 64 66 68 70 72 74 76 78													
F 3	V2 (kt IAS)	123	123	126	128	131	133	135	138	140	142	145	147	149	151	153	155	157
J	VR (kt IAS)	119	119	122	124	127	129	131	134	136	138	141	143	145	147	149	151	153
	V1 (kt IAS)	114	114	114	114	117	119	121	124	126	128	131	133	135	137	139	141	143

FLUID CONTAMINATED RUNWAY

TAKEOFF FROM A COMPACTED SNOW COVERED RUNWAY

- Determine maximum takeoff weight on dry runway.
- Apply the following weight decrement versus takeoff configuration, runway length and clearway availability to determine a corrected weight.

R

TAKEOFF CONFIGURATION		CON	IF 1 +	F		CONF	2		CONF	3
RWY LENGTH (m) (ft)	2500 8000	3000 10000	3500 11500	4000 13000 and above	2000 6500	2500 8000	3000 10000 and above	1750 5750	2000 6500	2500 8000 and above
∆WEIGHT (1000 kg) With clearway Without clearway	8.6 6.3	8.5 6.3	8.5 7.4	9.8 9.0	10.5 7.7	7.4 5.3	5.6 4.6	13.1 9.6	10.3 7.6	8.2 6.9

Enter the following tables with the corrected weight to determine MTOW then determine takeoff speeds associated with actual TOW.

R

	CORRECTED WEIGHT (1000 kg)	<52.7	52.7	54							5	4 to 7	8						
C	MTOW (1000 kg)	-	46.7	54					E	QUAL	to co	ORREC	TED \	NEIGH	Т				
0 N																			
F	ACTUAL WEIGHT (1000 kg)	<46.7	46.7	48	50	52	54	56	58	60	62	64	66	68	70	72	74	76	78
1+	V2 (kt IAS)	124	124	126	129	131	134	136	138	141	143	145	148	150	152	155	157	159	161
F	VR (kt IAS)	123	123	125	128	130	133	135	137	140	142	144	147	149	151	154	156	158	160
	V1 (kt IAS)	117	117	117	117	117	117	119	121	124	126	128	131	133	135	138	140	142	144

R

	CORRECTED WEIGHT (1000 kg)	<54.8	54.8	56	56.7							56.7	to 78						
c	MT0W (1000 kg)	-	48	53	56.7					EQU	AL TO	CORF	RECTE	d Wei	GHT				
Ö																			
Ν	ACTUAL WEIGHT (1000 kg)	<48	48	50	52	54	56	56.7	58	60	62	64	66	68	70	72	74	76	78
F 2	V2 (kt IAS)	124	124	127	129	132	134	135	137	139	141	143	146	148	150	153	155	157	159
'	VR (kt IAS)	119	119	122	124	127	129	130	132	134	136	138	141	143	145	148	150	152	154
	V1 (kt IAS)	115	115	115	115	115	115	115	117	119	121	123	126	128	130	133	135	137	139

	CORRECTED WEIGHT (1000 kg)	<56.3	56.3	58	58.7							58.7	to 78						
	, MTOW (1000 kg) – 48 55 58.7 EQUAL TO CORRECTED WEIGHT																		
lõ																			
N	ACTUAL WEIGHT (1000 kg)	<48	48	50	52	54	56	58	58.7	60	62	64	66	68	70	72	74	76	78
F	V2 (kt IAS)	123	123	126	128	131	133	135	136	138	140	142	145	147	149	151	153	155	157
ľ	VR (kt IAS)	119	119	122	124	127	129	131	132	134	136	138	141	143	145	147	149	151	153
	V1 (kt IAS)	114	114	114	114	114	114	114	114	116	118	120	123	125	127	129	131	133	135

AIRBUS TRAINING A320	SPECIAL OPERATIONS	2.04.10	P 10
SINULATOR FLIGHT CREW OPERATING MANUAL	Fluid contaminated runway	SEQ 001	REV 22

INTENTIONALLY LEFT BLANK

SPRAY PATTERN

There is a little chance of the engines ingesting fluid, which in any case should not jeopardize safety. The risk of ingestion is independent of the depth of the contaminant.

CROSSWIND

To optimize directional control during the low speed phase of the takeoff and landing roll and according to the reported braking action given by the control tower, it is not recommended to take off or to land with a crosswind component higher than :

п.

Reported braking	Reported runway friction		crosswind t)	Equivalent runway
action	coefficient	Takeoff	Landing	condition ^{**}
Good	≥ 0.4	29 *	33 *	1
Good/medium	0.39 to 0.36	29	29	1
Medium	0.35 to 0.3	2	5	2/3
Medium/poor	0.29 to 0.26	2	0	2/3
Poor	≤ 0.25	15		3/4
Unreliable		Į	5	4/5

* This is the maximum crosswind demonstrated for dry and wet runway.

** Equivalent runway condition (only valid for maximum crosswind determination)

- 1. Dry, damp or wet runway (less than 3 mm water depth)
- 2. Runway covered with slush
- 3. Runway covered with dry snow
- 4. Runway covered with standing water with risk of hydroplaning or wet snow
- 5. Icy runway or high risk of hydroplaning

.... CONSIDER

FLUID CONTAMINATED RUNWAY

- FOLLOWING TAXIING PROCEDURES

- Avoid high thrust settings.
- When taxiing on slipperv surfaces, stay well behind preceding aircraft.
- Taxi at low speed. Note that antiskid does not operate at low taxi speeds.
- On slipperv taxiways during turns with large nose wheel steering angles, noise and vibration may result from the wheels slipping sideways. Keep speed as low as possible to make a smooth turn with minimum radius. Differential power may be needed.
- If taxiing in icing conditions with precipitation on runways and taxiways contaminated with slush or snow :
 - · Before takeoff keep flaps/slats retracted until reaching the holding point on the takeoff runway to avoid contaminating the mechanism. Hold the BEFORE TO checklist at FLAP SETTING and finish it after extending flaps/slats.
 - · When taxiing in after landing, do not retract the flaps/slats to avoid damage of the structure.

After engine shutdown make a visual inspection to determine that the flap/slat mechanism is free of contamination.

- · When the mechanism is clean, use the following procedure to retract the flaps/slats before the aircraft electric network is de-energized :
 - * Set the YELLOW ELEC PUMP to ON
- * Check that the BLUE ELEC PUMP is in the AUTO position
- * Set the BLUE PUMP OVRD to ON
- * Retract the FLAPS and monitor retraction on ECAM page.
- * Select off the YELLOW ELEC PUMP and BLUE PUMP OVRD and resume with normal procedure.
- Note: On contaminated runways and taxiways, the radio altitude indications may fluctuate and auto call outs or GPWS warnings may be activated. Disregard them.
 - During taxi on snowy runways, the radio altimeters may not compute any data and the ECAM warnings 'DUAL ENG FAILURE', 'ANTI ICE CAPT TAT FAULT', 'ANTI ICE F/O TAT FAULT', 'L/G SHOCK ABSORBER FAULT' may be triggered. Disregard these warnings.

SPECIAL OPERATIONS

SEQ 001

. CONSIDER

R

R

R - FOLLOWING TAKEOFF PROCEDURES

- For contaminated runways, select MAX TO.
- Do not abort takeoff for minor deficiencies even at low speeds.
- R If you have to abort takeoff, maintain directional control with the rudder and small
 R inputs to the nose wheel. If necessary, use differential braking to regain the center
 R line when stopping distance permits.
- R Do not lift the nose wheel before VR in an attempt to avoid splashing slush on the aircraft, because this produces additional aerodynamic drag.
- R Rotate, lift off and retract gear and high lift devices in the normal manner.

LANDING

- FOLLOWING LANDING PROCEDURES CONSIDER
 - Avoid landing on contaminated runways if the antiskid is not functioning. The use of autobrake LOW or MED is recommended provided that the contamination is evenly distributed.
 - Approach at the normal speed.
 - Make a positive touchdown after a brief flare.
 - As soon as the aircraft has touched down, lower the nose wheel onto the runway and select maximum reverse thrust.

Do not hold the nose wheel off the ground.

- If necessary, the maximum reverse thrust can be used until the aircraft is fully stopped.
- If the runway length is limiting, apply the brakes before lowering the nose gear onto the runway, but be prepared to apply back stick to counter the nose down pitch produced by the brakes application. (The strength of this pitching moment will depend on the brake torque attainable on the slippery runway).
- Maintain directional control with the rudder as long as possible, use nose wheel steering with care.
- When the aircraft is at taxi speed, follow the recommendations for taxiing.
 - <u>Note</u>: If there is snow, visibility may be reduced by snow blowing forward at low speeds if reversers are not cancelled.

EXAMPLES

TAKEOFF PERFORMANCE ON DRY RUNWAY

<u>Data</u>

Runway length : 3000 m, $OAT = 36^{\circ}C$, no wind, CONF 1+F

Determine maximum takeoff weight on dry runway from RTOW chart (Refer to FCOM 2.02.10 p 6).

AA	OAT					CONF	1 + F					
A348AA	°C	TAILW	IIND	TAIL	VIND	WIN	ND.	HEAD	VIND	HEADWIND		
1	Ŀ	С – 10 КТ – 5 КТ ОКТ		10	KT	20 KT						
0410-014	34.0	76.7	4/6	78.4	4/6	80.2	4/6	81.5	4/6	82.8	4/6	
T	54.0	143/50/52		148/5	3/55	154/5	6/58	157/5	7/60	160/6	0/62	
C 5 - D 2 -	36.0 76.5 4/6		4/6	78.4	4/6	80.1 4/6		81_4 4/6		6 82.7		
NFC5	0.00	143/49	9/52	148/5	2/54	153/5	6/58	156/5	7/59	160/60/62		

Maximum TOW = 80100 kg, V1 = 153 kt, VR = 156 kt, V2 = 158 kt

TAKEOFF PERFORMANCE ON WET RUNWAY

With no thrust reversers operating and assuming that no clearway was used to compute the dry RTOW chart, use the lower table from 2.04.10 p 3.

[TAKEOFF CONFIGURATION	C	ONF 1	F		CONF 2	2		CONF 3	5
	RUNWAY LENGTH									
	(m)			3500			3000			2500
<	(ft)	2500	3000	11500	2000	2500	10000	1750	2000	8000
8 A /		8000	10000	and	6500	8000	and	5750	6500	and
B34				above			above			above
014-E	FLEX TO TEMPERATURE DECREMENT (°C)	8	5	3	8	6	2	6	6	2
-	MAX TO WEIGHT									
04	DECREMENT (1000 kg)	2.6	2.0	1.3	2.5	2.2	0.7	2.1	2.1	0.7
02-	(1000 lb)	5.8	4.5	2.9	5.6	4.9	1.6	4.5	4.7	1.6
5	V1 DECREMENT (kt)	15	14	14	16	14	14	14	15	13
NFC	VR AND V2 DECREMENT (kt)	2	1	1	2	1	2	1	2	0

 \cdot Maximum takeoff weight correction : MTOW = 80100 - 2000 = 78100 kg, V1 = 153 - 14 = 139 kt, VR = 156 - 1 = 155 kt, V2 = 158 - 1 = 157 kt.

· Flex temperature correction :

Assuming an actual takeoff weight of 78400 kg and an initial flex temperature of 47°C TOW = 78400 kg \Rightarrow Flex temperature = 47 - 5 = 42°C

V1 = 152 - 14 = 138 kt, VR = 154 - 1 = 153 kt, V2 = 156 - 1 = 155 kt.

Check the resulting speeds against the minimum speeds as per procedure 2.04.10 p2a.

2.04.10 P 15

SEQ 348 REV 38

TAKEOFF PERFORMANCE ON RUNWAY COVERED WITH 1/2 INCH SLUSH

<u>Data</u>

<

Runway length 3000 m (no clearway), $OAT = 5^{\circ}C$, 5 kt tailwind, CONF 1+F

- Determine maximum takeoff weight on dry runway (Refer to FCOM 2.02.10 p 6).

	OAT			CONF 1 + F		
5	°C	TAILWIND	TAILWIND	WIND	HEADWIND	HEADWIND
<1.0-01.50-	L	-10 KT	-5 KT	0 KT	10 KT	20 KT
5	0.0	78.8 4/6	80.6 4/6	82.5 4/6	83.7 3/4	84.7 3/4
2	0.0	151/54/57	156/57/59	162/62/64	165/65/67	168/68/70
20-02	10.0	78.2 4/6	80.0 4/6	81.8 4/6	83.1 4/6	84.2 3/4
Z Z	10.0	148/53/55	154/57/59	159/60/62	163/63/65	166/66/67

Maximum takeoff weight on dry runway = 80300 kg

 Determine a corrected weight (Refer to FCOM 2.04.10 p 8). As no clearway, use the correction displayed on the second line (without clearway).

R

A	TAKEOFF CONFIGURATION		CONF	1+F			CONF 2	2	(CONF 3	3
15-B348AA	RUNWAY LENGTH (m)	2500	3000		4000	2000	2500	3000	1750	2000	2500
	(ft)	8000	10000	11500	13000 and above	6500	8000	10000 and above	5750	6500	8000 and above
NFC5-02-0410-0	∆ WEIGHT (1000 kg) With clearway Without clearway				15.4 14.6			17.9 16.9			

Corrected weight = 80300 - 17300 = 63000 kg

- Determine maximum takeoff weight and associated speeds :

R

484A	CORRECTED WEIGHT (1000 kg)	<47.8	47.8	48						48	8 to	78							٦
0 <u>-</u> 034 N	MTOW (1000 kg)	-	46.7	48			E	QUA	LT	'O C	orr	ECT	ED	WEI(GHT				
<u>610</u>																			
10-1	ACTUAL WEIGHT (1000 kg)	<46.7	47.3	48	50	52	54	56	58	60	62	64	66	68	70	72	74	76	78
-70-20- F	V2 (kt IAS)	124	124	126	129	131	134	136	138	141	143	145	148	150	152	155	157	159	161
ΡF	VR (kt IAS)	123	123	125	128	130	133	135	137	140	142	144	147	149	151	154	156	158	160
NFC5	V1 (kt IAS)	117	117	117	120	122	125	127	129	132	134	136	139	141	143	146	148	150	152

 $\mathsf{MTOW} = 63000 \text{ kg}$

V1 = 135 kt, VR = 143 kt, V2 = 144 kt

AIRBUS TRAINING A320	SPECIAL OPERATIONS	2.04.15	P 1
SIMULATOR FLIGHT CREW OPERATING MANUAL	FERRY FLIGHT WITH NO SLATS	SEQ 001	REV 20

FERRY FLIGHT WITH NO SLATS

TO BE ISSUED LATER

P 1

REV 21

FLIGHT WITHOUT CAB PRESSURIZATION SEQ 001

The aircraft may fly without cabin pressurization because of an aircraft system deficiency (see MEL) or after a decompression in flight. The pilot's choice of flight level and airspeed depends on the cause of the depressurization, the distance to fly, the topographic conditions and the meteorological conditions.

OXYGEN REQUIREMENTS

CREW MEMBERS

See FAR 121.329 or JAR-OPS 1.770

PASSENGERS

For flight at cabin pressure altitudes above 10000 feet, up to and including 14000 feet, there must be enough oxygen to supply 10% of the passengers for the flight at those altitudes that lasts more than 30 minutes.

For flight at cabin pressure altitudes above 14000 feet, up to and including 15000 feet, there must be enough oxygen for 30 % of the passengers.

For flight at cabin pressure altitudes above 15000 feet, there must be enough oxygen for all passengers.

AIRBUS TRAINING	SPECIAL OPERATIONS	2.04.20	P 2
SINULATOR FLIGHT CREW OPERATING MANUAL	FLIGHT WITHOUT CAB PRESSURIZATION	SEQ 001	REV 20

INTENTIONALLY LEFT BLANK

FLIGHT WITHOUT CAB PRESSURIZATION SE0 001

FLIGHT PLANNING AND EXECUTION

ALTITUDE

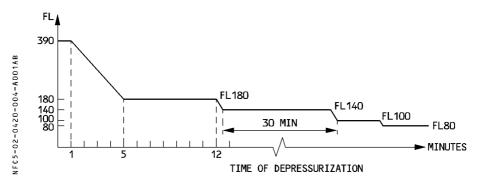
Flight route planning should consider the above-stated restriction in cabin altitude. If cabin altitude exceeds 9550 ± 350 feet, the EXCESS CAB ALT warning on the ECAM will be activated. When above 14000 feet, the passenger oxygen masks will drop automatically. Therefore, the recommended maximum altitude for prolonged flight is FL100. The minimum altitude should be selected by respecting :

- The Minimum Safe Altitude (MSA),
- Turbulence, which is uncomfortable for passengers and,
- Low Outside Air Temperature (OAT), which can be uncomfortable for passengers when the cabin is ventilated by ram air only.

AIRSPEED

If decompression is due to structural damage, consider airspeed reduction. Use slats and flaps, as necessary, to establish low speed conditions. In addition, turbulent conditions are uncomfortable for passengers, and gust response should be minimized by reducing airspeed.

CLIMB AND DESCENT RATE


Takeoff must be performed normally, and the rate of climb must be limited to about 500 feet/minute, to ease the pressure change felt by passengers and crew.

Likewise, the rate of descent must be limited to about 1000 feet/minute, except for the final R approach which must be performed normally. Notify the ATC of any performance deficiency by a remark in the flight plan.

AIRBUS TRAINING A320	SPECIAL OPERATIONS	2.04.20	P 4
FLIGHT CREW OPERATING MANUAL	FLIGHT WITHOUT CAB PRESSURIZATION	SEQ 001	REV 36

EMERGENCY DESCENT IN CASE OF RAPID DEPRESSURIZATION

In the event of depressurization, oxygen is supplied to passengers through an individual mask. The capacity of the units is such that the aircraft must descend and remain below the following profile.

FLIGHT WITHOUT CAB PRESSURIZATION

SYSTEMS

FAILURE OCCURRING IN FLIGHT

Apply the abnormal and emergency procedures required by ECAM.

FAILURE PRESENT AT DISPATCH

- If flight with both packs inoperative
 - PACK 1 and 2OFF
 - RAM AIR**ON**

Note : If the «AVIONICS SMOKE» procedure has to be applied, the following flight time limitations have to be considered to protect the avionic equipment : At ISA + 40 : 0.5 hour At ISA + 30 : 1.5 hour At ISA + 20 : 4 hours At ISA + 10 and below : No limitation.

Between FL 80 and FL 150, oxygen must be provided for 2 % of the passengers. This is provided by the portable oxygen system. When it is no longer available, descend to FL 80. For performance at FL 80/250 knots : Use data for FL 100/LRC given in 3.05.15, and increase fuel consumption by 6 %.

If both CAB PRESS systems are inoperative, or if there is structural damage : TEST OF THE MANUAL OPERATION OF THE OUTFLOW VALVE ON GROUND :

— PACK 1 and 2 OFF
- OUTFLOW VALVE FULLY OPEN CHECK Check that the outflow valve is fully open on the CAB PRESS page
— RPCU C/B (X23 ON 122VU) PULL
– MODE SEL MAN
– MAN V/S CTL DN Check that the outflow valve closes on the CAB PRESS page
- MAN V/S CTL

AIRBUS TRAINING A320	SPECIAL OPERATIONS	2.04.20	P 5a
	FLIGHT WITHOUT CAB PRESSURIZATION	SEQ 100	REV 40
– MODE SEL			AUTO
— RPCU C/B (X23	3 ON 122VU)		PUSH
— PACK 1 and 2			ON
Between FL 80 a is provided by tl	and FL 150, oxygen must be provided for 2 the portable oxygen system. When it is no lerformance at FL 80/250 knots : Use data	% of the pass longer availa	engers. This ble, descend

TAKEOFF

Limit the aircraft's rate of climb to about 500 feet/minute.

3.05.15, and increase fuel consumption by 6 %.

- If both CAB PRESS systems one inoperative, or if there is structural damage :
 WHEN IN CLEAN CONFIGURATION :
 - MODE SEL MAN
 - V/S CTL AS RQRD Use V/S CTL to set the outflow valve opening to 50 %.

- OUTFLOW VALVE HALF OPEN CHECK The outflow valve opening is limited to 50 %, to prevent the cabin air suction effect.

CLIMB

<u>Note</u>: The EXCESS CAB ALT warning may occur. Use the ECAM CLR pushbutton to clear the warning.

DESCENT

Limit the aircraft's rate of descent to about 1000 feet/minute. Perform the final approach normally.

AIRBUS TRAINING A320	SPECIAL OPERATIONS	2.04.20	P 6
SIMULATOR FLIGHT CREW OPERATING MANUAL	FLIGHT WITHOUT CAB PRESSURIZATION	SEQ 030	REV 27

PERFORMANCE DATA

The following table enables the fuel consumption and the time needed from takeoff to landing to be determined in case of flight without cabin pressurization. The table is established for :

- Takeoff
- Climb from 1500 ft at 250 kt
- Long range cruise speed at FL100
- Descent to 1500 ft at 250 kt
- Approach and landing : IMC procedure 120 kg or 260 lb (6 min)
- ISA temperature
- CG = 25 %
- Normal air conditioning
- Anti ice OFF

The table on page 8 gives the conversion from ground distance to air distance

- R Following tables have been calculated using databases for CFM 56–5–B /P. If the engines
- R fitted on the aircraft are not /P, the fuel consumption has to be increased by 3 %.

<u>Note</u> : For each degree Celcius above ISA temperature apply a correction of 0.01 (kg/°C/NM) or 0.022 (lb/°C/NM).

AIRBUS TRAINING

(((

A320

FLIGHT CREW OPERATING MANUAL

ש _{simulator}

SPECIAL OPERATIONS

FLIGHT WITHOUT CAB PRESSURIZATION

2.04.20

SEQ 170

P 7 REV 28

R

NORMAL AIR ANTI-ICING O AIR DIST. (NM) 220 240		NG			FUE		FL 100
AIR DIST. (NM) 220	50		CG =	ISA FU CG = 25.0%			
DIST. (NM) 220				25.0%		TIME (H.M	IIN)
(NM) 220			INITIAL W	/EIGHT (1000	nKG)		
	1895	55	60	65	70	75	80
240	0.55	1968 0.53	2040 0.52	2110 0.51	2183 0.51	2257 0.50	2336 0.50
	2039	2119	2197	2271	2348	2426	2509
	0.59	0.57	0.55	0.55	0.54	0.54	0.54
260	2183	2270	2353	2432	2513	2595	2682
	1.04	1.01	0.59	0.58	0.58	0.57	0.57
280	2326	2420	2509	2593	2678	2763	2854
300	1.08	<u>1.05</u>	1.03	1.02	1.01	1.01	<u>1.01</u>
	2470	2571	2665	2753	2842	2932	3026
320	1.13	1.09	1.07	1.05	1.04	1.04	<u>1.04</u>
	2613	2721	2821	2914	3007	3100	3199
340	1.17	1.13	1.10	1.09	1.08	1.07	<u>1.07</u>
	2756	2871	2977	3074	3171	3269	3371
	1.21	1.17	1.14	1.12	1.11	1.11	<u>1.11</u>
	2899	3020	3133	3234	3336	3437	3543
360	1.26	1.21	1.18	1.16	1.15	1.14	<u>1.14</u>
	3042	3170	3288	3394	3500	3605	3715
380	1.30	1.25	1.21	1.20	1.18	1.18	1.17
400	3185	3319	3444	3554	3664	3773	3886
	1.35	1.30	1.25	1.23	1.22	1.21	1.21
420	3327	3468	3599	3713	3828	3941	4058
	1.39	1.34	1.29	1.27	1.25	1.24	1.24
440	3469	3616	3754	3873	3992	4108	4229
	1.44	1.38	1.33	1.30	1.29	1.28	1.28
460	3611	3765	3909	4032	4155	4276	4400
	1.48	1.42	1.36	1.34	1.32	1.31	1.31
480	3753	3913	4064	4192	4319	4443	4572
	1.53	1.46	1.40	1.38	1.36	1.35	1.34
500	3895 1.57	4061 1.50	4219	4351 1.41	4482 1.39	4611 1.38	4743
520	4036	4209	4373	4510	4645	4778	4913
540	2.01	1.55	1.48	1.45	1.43	1.41	<u>1.41</u>
	4177	4357	4528	4668	4808	4945	5084
560	2.06	1.59	1.52	1.48	1.46	1.45	<u>1.45</u>
	4318	4505	4682	4827	4971	5112	5255
	2.10 4459	2.03	1.55 4836	1.52 4986	1.50 5134	1.48 5279	<u>1.48</u> 5425
580	2.15	2.07	1.59	1.56	1.53 5297	1.52 5446	<u>1.51</u> 5595
600	<u>2.19</u> 4741	<u>2.12</u> 4946	2.03 5144	1.59 5302	1.57 5460	1.55 5612	<u> </u>
620	2.24	2.16	2.07	2.03	2.00	1.58	1.58
640	4881	5093	5298	5460	5622	5779	5936
	2.28	2.20	2.11	2.07	2.04	2.02	2.01
660	5021	5240	5451	5618	5784	5945	6106
	2.33	2.25	2.14	2.10	2.07	2.05	2.05
680	5161	5386	5605	5776	5946	6112	6275
	2.37	2.29	2.18	2.14	2.11	2.09	2.08
700	5301 2.42	5532 2.34	5758	5934 2.18	6108 2.14	6278 2.12	6445 2.12
AIR	CONDITIONIN OFF FUEL = - 2.5 %	G	ENG ANTI I ∆FUEL =	INE CE ON	2.17	TOTAL ANTI ICE C AFUEL = +	DN

AIRBUS TRAINING A320 SIMULATOR

FLIGHT CREW OPERATING MANUAL

SPECIAL OPERATIONS

2.04.20

FLIGHT WITHOUT CAB PRESSURIZATION SEQ 001

REV 36

P 8

GROUND DISTANCE/AIR DISTANCE CONVERSION

GROUND	AIR DISTANCE (NM)						
DIST.	TAIL WIN	D	WIND (OMPONEN	TS (KT)	HEA	AD WIND
(NM)	+150 +100 + 50 0 -50				-50	-100	-150
40	27	30	35	40	48	59	76
60	41	46	52	60	71	88	115
80	54	61	69	80	95	117	153
100	68	76	86	100	119	146	191
120	81	91	104	120	143	176	229
140	95	106	121	140	166	205	267
160	108	121	138	160	190	234	305
180	122	137	155	180	214	264	344
200	135	152	173	200	238	293	382
220	149	167	190	220	261	322	420
240	163	182	207	240	285	352	458
260	176	197	224	260	309	381	496
280	190	213	242	280	333	410	534
300	203	228	259	300	357	439	573
320	217	243	276	320	380	469	611
340	230	258	293	340	404	498	649
360	244	273	311	360	428	527	687
380	257	288	328	380	452	557	725
400	271	304	345	400	475	586	763
420	285	319	362	420	499	615	802
440	298	334	380	440	523	645	840
460	312	349	397	460	547	674	878
480	325	364	414	480	571	703	916
500	339	380	432	500	594	732	954
520	352	395	449	520	618	762	992
540	366	410	466	540	642	791	1031
560	379	425	483	560	666	820	1069
580	393	440	501	580	689	850	1107
600	406	455	518	600	713	879	1145

REV 30

GENERAL

This Chapter applies to dispatch with landing gear down. However, the limitations and inflight performance also apply in case of an inflight landing gear retraction failure. Revenue flight is permitted, with the landing gear down and the gear doors closed, in the conditions stated below.

LIMITATIONS

- Do not fly into expected icing conditions.
- Ditching with the landing gear down has not been demonstrated.
- Disregard FM fuel predictions. Other predictions should also be disregarded (altitude, speed and time), except time predictions at waypoints when in cruise.
- R Do not use managed speed (except in approach) and CLB and DES autopilot modes.
 - ALTITUDE ALERT is not available.

PROCEDURES

PREFLIGHT

VMO/MMO with the landing gear down is 235 knots/M.60. In the avionics compartment, on 188 VU, the VMO-MMO switch must be set to the «L/G DOWN» position.

R R

AIRBUS TRAINING	SPECIAL OPERATIONS	2.04.25	P 2
SIMULATOR FLIGHT CREW OPERATING MANUAL	Flight with gear down	SEQ 100	REV 20

INTENTIONALLY LEFT BLANK

ABN AND EMER PROCEDURES

FLIGHT CONTROLS

Failure cases, which would normally lead to ALTN law, will degrade F/CTL laws down to DIRECT law, if the landing gear is extended.

FAILURE OF BOTH ENGINES

- R When both engines are failed, to ease the handling of all the different ECAM procedures
- R resulting from this all engine flame out situation, it is recommended to use the ENG DUAL
- R FAILURE QRH paper procedure, and if time permits, to clear the ECAM.
- R Follow all the steps of the QRH paper procedure, except those that are modified by the procedure below :
 - If the APU is not available :
 - · Attempt an APU start
 - \cdot If APU start is unsuccessful, a windmilling relight can be performed, as long as the speed is above 300 knots (corresponding N2 above 12%).
 - In this case, increase the aircraft speed and disregard the VMO warning.
 - If the APU is available : Perform an assisted relight, when below FL 200.
 - Flight controls are in direct law. Use manual pitch trim, as necessary (not indicated on PFD, if APU GEN not available).
 - In approach, set CONF 1 at or above 200 knots.
 Do not select flaps/slats below 200 knots.

FLIGHT WITH GEAR DOWN

PERFORMANCE

Consider the increase in drag to determine the takeoff weight and fuel consumption. CONF 1 + F is the recommended takeoff configuration.

Note : Takeoff with tail wind is not recommended.

Penalties on takeoff performance affect second segment gradient condition, final takeoff condition and en-route conditions. The takeoff weight to be retained is the most limiting of these three conditions.

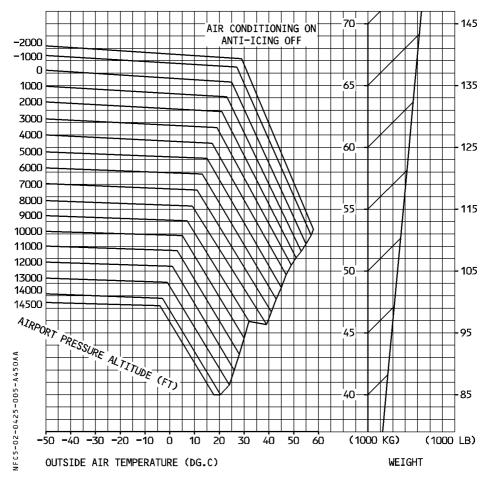
SECOND SEGMENT GRADIENT CONDITION

The RTOW charts or the quick reference tables give the basic information for normal takeoff. To simplify, a constant weight reduction is applied whatever the limitation. This weight reduction covers the most critical case presented for flying over an obstacle.

Takeoff configuration	1 + F	2	3
Weight reduction	22 %	19 %	19 %

METHOD

Use the RTOW chart or the quick-reference tables to define the maximum takeoff weight for the conditions on the airport (temperature, pressure, wind, runway...), then apply the above weight reduction.


FINAL TAKEOFF CONDITION

The final takeoff speed is VLS.

AIRBUS TRAINING A320	SPECIAL OPERATIONS	2.04.25	Ρ5
ASZU SIMULATOR FLIGHT CREW OPERATING MANUAL	Flight with gear down	SEQ 450	REV 35

Use the graph below to determine the maximum takeoff weight associated with the final takeoff condition. This graph is established for 25 % CG location.

In case of forward CG the weight must be decreased by 400 kg (900 lb).

FLIGHT WITH GEAR DOWN

EN ROUTE CONDITION

Retain the lowest weight according to the most limiting condition (second segment or final takeoff). Use the en route net flight path on page 11 to check that in case of engine failure the aircraft can clear the terrain on the route by 1000 feet (climbing) or 2000 feet (descending). If necessary, reduce the takeoff weight. Read the speeds corresponding to this weight in the RTOW chart or in the quick reference tables.

GO AROUND PERFORMANCE

See 3.05.35 for go-around requirements. Further decrease the basic limiting weight by 15 %.

FLIGHT PLANNING

 R
 Note : The performance tables are established at ISA. For each degree Celsius above ISA temperature and per NM of air distance apply a fuel correction of 0.05 kg/°C/NM (0.11 lb/°C/NM).

CLIMB

Climb at 230 kt/M.50 with both engines at maximum climb thrust. The table on page 7 gives the time, distance and fuel consumption according to takeoff weight.

CRUISE/DESCENT

The recommended cruise/descent speed is 230 kt/M.50.

The ceiling on one engine may be a limiting factor, and the choice of the route should reflect this concern.

ENGINE FAILURE

In case of engine failure, the airplane will drift down to the ceiling shown on page 12. The thrust for drift down will be Maximum Continuous. The drift down speed is equal to green dot speed.

HOLDING

Page 10 gives the holding parameters with slats out, this configuration being the least penalizing for holding.

AIRBUS TRAINING

SIMULATOR

FLIGHT CREW OPERATING MANUAL

SPECIAL OPERATIONS FLIGHT WITH GEAR DOWN

2.04.25

SEQ 140

P 7 REV 23

R

		CLIM	B 230KT/	M.50 - AI	LL ENGIN	IES - L/G DOW	'N	
MAX. C	limg thr	UST LIMI	TS	IS	A	FROM B	RAKE RELEAS	E
NORMA	L AIR CON	IDITIONI	IG	CG=2	25.0%	TIME (MIN) FUEL (
ANTI-ICI	NG OFF					DISTANCE (NM) TAS (
	WEIGHT A	AT BRAKE	RELEASE	(1000KG)				
FL	50	52	54	56	58	60 62	64	66
000	21 1651	23 177	8 25 1921	27 2085	30 2277	33 2507		
290	98 279	106 28	0 116 281	127 282	140 283	156 284		
070	18 1500	20 160	7 21 1725	23 1858	25 2009	27 2183 30 2	389	
270	85 277	92 27	8 99 279	108 279	117 280	129 281 143	282	
250	16 1356	17 144	7 19 1546	20 1655	21 1778	23 1915 25 2	073 28 2257	31 2475
250	74 274	79 27	5 85 275	92 276	99 277	107 278 117	279 129 280	143 282
240	15 1285	16 136	9 17 1459	18 1559	20 1669	21 1792 23 1	932 25 2091	27 2277
240	68 272	73 27	3 78 273	84 274	91 275	98 276 106	277 116 278	128 279
220	13 1143	14 121	4 15 1289	16 1371	17 1461	18 1559 19 1	668 21 1790	22 1928
220	58 267	62 26	8 66 268	70 269	75 270	81 271 87	272 94 273	102 274
200	11 999	12 105	7 12 1119	13 1185	14 1256	15 1333 16 1	417 17 1509	18 1610
200	48 260	51 26		57 262	61 263		264 74 265	80 266
100	9 845	989	2 10 940	11 992	11 1047	12 1105 12 1	167 13 1233	14 1304
180	37 250	40 25	J 42 251	44 251	47 252	50 253 53	253 56 254	59 255
100	7 718	8 75	6 8 795	9 837	9 880	10 926 10	975 11 1026	11 1080
160	29 240	31 24		35 241	37 242	38 242 41	243 43 244	45 244
140	6 611	6 64		7 709	7 744		820 9 861	9 904
140	23 230	25 23		27 232	29 232		233 34 234	35 234
120	5 517	5 54		6 598	6 627		689 7 722	7 756
120	19 220	20 22		22 222	23 222		223 26 224	28 224
100	4 432	4 45		5 498	5 522		572 6 598	6 626
100	14 209	15 21		17 211	18 212		213 20 213	21 214
EU	2 243	2 25		3 278	3 290	3 303 3	317 3 330	3 344
50	6 171	7 17		7 173	8 174		175 9 176	9 177
15	1 123	1 12		1 139	1 145	1 151 1	157 2 163	2 170
10	2 108	2 10	9 2 110	2 110	3 111	3 112 3	113 3 113	3 114

11.0-08F0A320-214 CFM56-5B4/P SA21101000C5KG250 0 018590 0 0 2 1.0 500.0 300.00 1 02230.000 .500.000 0 FC0M-N0-02-04-25-007-140

AIRBUS TRAINING

FLIGHT CREW OPERATING MANUAL

SPECIAL OPERATIONS

2.04.25

SEQ 140

P 8 REV 26

FLIGHT WITH GEAR DOWN

FLIP

R

CRUISE - 230KT/M.50 - ALL ENGINES - L/G DOWN												
MAX. CRUISE THRUST LIMITS NORMAL AIR CONDITIONING ANTI-ICING OFF					ISA CG=25.0%		N1 (%) KG/H/ENG NM/1000KG		MACH IAS (KT) TAS (KT)			
WEIGHT (1000KG)	FL1	00	FL2	00	FL2	20	FL2	40	FL2	70	FL2	90
48	73.9 1768 75.2	.417 230 266	83.4 1810 84.8	.500 228 307	83.2 1687 90.3	.500 219 305	83.2 1577 95.8	.500 210 302	83.3 1435 104.0	.500 197 298	83.5 1359 108.9	.500 188 296
50	74.2 1781 74.6	.417 230 266	83.6 1825 84.1	.500 228 307	83.5 1704 89.4	.500 219 305	83.5 1596 94.7	.500 210 302	83.6 1459 102.3	.500 197 298	84.0 1387 106.7	.500 188 296
52	74.4 1795 74.1	.417 230 266	83.8 1841 83.4	.500 228 307	83.7 1722 88.5	.500 219 305	83.8 1616 93.5	.500 210 302	84.0 1485 100.5	.500 197 298	84.5 1417 104.4	.500 188 296
54	74.6 1810 73.4	.417 230 266	84.0 1857 82.7	.500 228 307	84.0 1741 87.5	.500 219 305	84.1 1638 92.3	.500 210 302	84.5 1513 98.6	.500 197 298	85.1 1454 101.7	.500 188 296
56	74.9 1826 72.8	.417 230 266	84.3 1875 81.9	.500 228 307	84.3 1761 86.5	.500 219 305	84.4 1662 90.9	.500 210 302	84.9 1543 96.7	.500 197 298	85.7 1497 98.9	.500 188 296
58	75.1 1843 72.1	.417 230 266	84.5 1894 81.1	.500 228 307	84.6 1782 85.5	.500 219 305	84.8 1687 89.6	.500 210 302	85.4 1574 94.8	.500 197 298	86.3 1541 96.0	.500 188 296
60	75.4 1861 71.5	.417 230 266	84.8 1914 80.2	.500 228 307	84.9 1805 84.4	.500 219 305	85.1 1714 88.2	.500 210 302	86.0 1616 92.3	.500 197 298		
62	75.7 1879 70.8	.417 230 266	85.1 1935 79.4	.500 228 307	85.2 1829 83.3	.500 219 305	85.5 1742 86.8	.500 210 302	86.6 1660 89.9	.500 197 298		
64	76.0 1898 70.0	.417 230 266	85.3 1957 78.5	.500 228 307	85.5 1856 82.1	.500 219 305	85.9 1772 85.3	.500 210 302				
66	76.3 1918 69.3	.417 230 266	85.6 1981 77.5	.500 228 307	85.9 1883 80.9	.500 219 305	86.3 1804 83.7	.500 210 302				
68	76.6 1939 68.6	.417 230 266	85.9 2005 76.6	.500 228 307	86.2 1912 79.7	.500 219 305						

FLIGHT CREW OPERATING MANUAL

SPECIAL OPERATIONS

FLIGHT WITH GEAR DOWN

2.04.25

SEQ 170

P 9 REV 23

R

	DESCENT - M.50/230KT - ALL ENGINES - L/G DOWN								
IDLE THRUST			IS	A					
NORMAL A	IR CONDI	TIONING	CG=	25.0%					
ANTI-ICING	OFF				махімиі	VI CABIN F	ATE OF DE	ESCENT 35	OFT/MIN
WEIGHT									
(1000KG)		4	5			. 5	5		
	TIME	FUEL	DIST.	N1	TIME	FUEL	DIST.	N1	IAS
FL	(MIN)	(KG)	(NM)		(MIN)	(KG)	(NM)		(KT)
290	7.1	67	33	IDLE	8.2	77	38	IDLE	188
270	6.6	63	30	IDLE	7.6	74	35	IDLE	197
250	6.1	60	28	IDLE	7.1	70	32	IDLE	205
240	5.8	58	26	IDLE	6.8	68	31	IDLE	210
220	5.4	55	24	IDLE	6.3	64	28	IDLE	219
200	4.9	51	22	IDLE	5.8	60	26	IDLE	228
180	4.5	47	20	IDLE	5.2	55	23	IDLE	230
160	4.0	41	17	IDLE	4.6	48	20	IDLE	230
140	3.4	34	15	IDLE	4.0	40	17	IDLE	230
120	2.9	28	12	IDLE	3.4	32	14	IDLE	230
100	2.3	21	10	IDLE	2.7	25	11	IDLE	230
50	1.0	9	4	IDLE	1.2	10	5	IDLE	230
15	.0	0	0	IDLE	.0	0	0	IDLE	230

11.0-08F0A320-214 CFM56-5B4/P 23101000C5KG250 0 018590 0 0-1-350.0 15.0 .00 0 02 .500230.000 .000 0 FC0M-N0-02-04-25-009-170

AIRBUS TRAINING

((7.

A320

SIMULATOR

FLIGHT CREW OPERATING MANUAL

SPECIAL OPERATIONS FLIGHT WITH GEAR DOWN

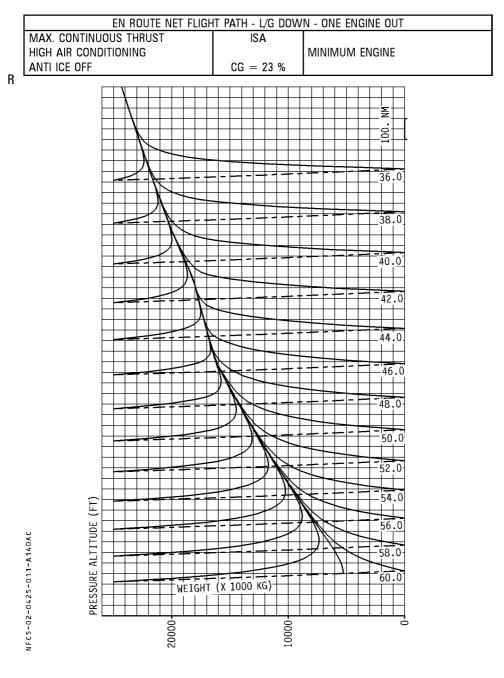
2.04.25

SEQ 140

P 10 REV 31

R

RACE TR/	RACE TRACK HOLDING PATTERN - S SPEED - ALL ENGINES - L/G DOWN								
MAX. CRUISE THRUST LIMITS					ISA		N1	(%)	
CONFIGURATION	1				CG = 2	25.0%	FF (KG/H/ENG)		
NORMAL AIR CO	-						(,,	
		10							
ANTI-ICING OFF									
WEIGHT (1000KG)	FL 15	FL 50	FL100	FL120	FL140	FL160	FL180	FL200	
46	56.3	59.1	62.9	64.7	66.5	68.3	70.1	71.9	
40	1248	1223	1206	1202	1198	1194	1192	1187	
48	57.4	60.3	64.1	66.0	67.8	69.5	71.3	73.2	
	1297 58.6	1274 61.3	1260 65.3	1255 67.2	1251 69.0	1248 70.7	1243 72.5	1239 74.4	
50	58.0 1347	1327	1313	1308	69.0 1304	1300	12.5	1293	
	59.7	62.3	66.6	68.3	70.1	71.8	73.7	75.5	
52	1398	1380	1366	1361	1357	1353	1348	1347	
	60.8	63.3	67.7	69.5	71.1	72.9	74.8	76.7	
54	1449	1434	1419	1415	1410	1405	1402	1402	
ГС	61.7	64.3	68.8	70.5	72.2	74.0	75.9	77.8	
56	1501	1488	1472	1467	1463	1458	1457	1457	
EO	62.6	65.4	69.8	71.5	73.2	75.1	77.0	78.9	
58	1554	1541	1525	1520	1516	1512	1512	1514	
60	63.5	66.4	70.8	72.4	74.2	76.1	78.0	79.8	
00	1607	1594	1578	1573	1569	1567	1568	1571	
62	64.4 1CE0	67.4	71.7	73.4	75.2	77.1	79.0	80.8	
	1659 65.3	1645 68.4	1631 72.6	1626 74.4	1622 76.2	1622 78.1	1624 79.9	1627 81.7	
64	1713	1699	1684	74.4 1680	1677	1678	1681	1684	
	66.3	69.3	73.5	75.3	77.1	79.1	80.8	82.6	
66	1766	1753	1738	1734	1733	1735	1738	1743	
	67.2	70.2	74.4	76.2	78.1	80.0	81.7	83.4	
68	1819	1806	1792	1789	1789	1792	1796	1804	
	68.1	71.1	75.3	77.1	79.0	80.8	82.6	84.2	
70	1872	1859	1847	1845	1846	1850	1854	1865	
72	69.0	71.9	76.2	78.0	79.9	81.6	83.3	85.0	
12	1926	1913	1901	1901	1904	1908	1914	1928	
74	69.8 1081	72.7	77.0	78.9	80.7	82.4	84.1	85.7	
_	1981 70.6	1967 73.4	1957 77.8	1958 79.7	1962 81.5	1966 83.2	1975 84.8	1990	
76	2033	2021	2013	2015	2019	2024	2036		
	71.4	74.2	78.6	80.5	82.2	83.9	85.5		
78	2085	2075	2069	2073	2077	2084	2099		

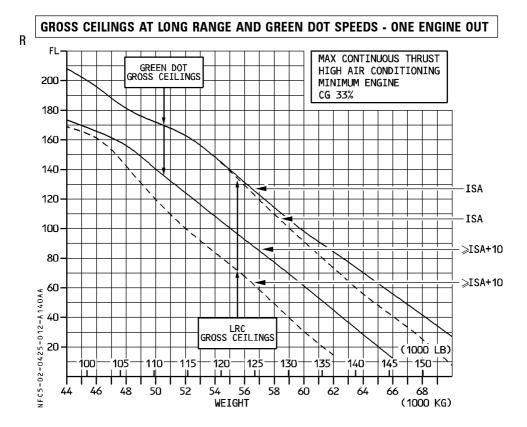


SPECIAL OPERATIONS

2.04.25 P 11

FLIGHT WITH GEAR DOWN

SEQ 140 | REV 23



SPECIAL OPERATIONS

2.04.25 P 12

FLIGHT WITH GEAR DOWN

SEQ 140 | REV 31

BLEED CORRECTIONS

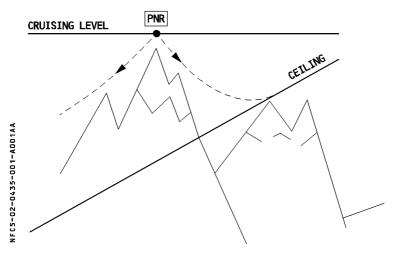
R	_	
	R	
	11	

		ISA	\geq ISA + 10
LONG	ENGINE ANTI ICE ON	– 500 FT	– 2800 FT
RANGE	TOTAL ANTI ICE ON	– 1300 FT	– 4600 FT
GREEN	ENGINE ANTI ICE ON	– 200 FT	– 1700 FT
DOT	TOTAL ANTI ICE ON	– 1200 FT	– 3500 FT

FLIGHT OVER MOUNTAINOUS AREA

P 1

INTRODUCTION


Two failures must be taken into consideration for en route obstacle clearance over mountainous area :

- Engine failure that forces a descent to a lower cruise level
- Depressurization which, due to the passenger oxygen system, requires a descent to 10000 feet before supplementary oxygen is exhausted.

ENGINE FAILURE

If the standard strategy does not allow the aircraft to clear obstacles, the pilot must use a drift down procedure. If an engine failure occurs at any point on the route, the net flight path must clear the obstacles on the drift-down part by 2000 feet and on the climb part by 1000 feet.

If the aircraft cannot clear the en route obstacles, a point of no return (PNR) must be determined.

If an engine failure occurs after the PNR, the aircraft must drift down on course. If the failure occurs before the PNR, the aircraft must turn back. For en route net flight paths, refer to the Aircraft Flight Manual.

FLIGHT OVER MOUNTAINOUS AREA

DEPRESSURIZATION

In case of depressurization, the passengers receive oxygen through individual modules. An emergency descent in accordance with a certain profile has to be performed (Refer to 2.04.20) FLIGHT WITHOUT CABIN PRESSURIZATION

CONCLUSION

R A detailed study of each route over mountainous area must show that single-engine net R flight path and passenger oxygen system performance allow the aircraft to clear the obstacles by 1000 feet in climb and by 2000 feet in cruise or descent.

If the aircraft in these circumstances cannot clear the obstacles on the route, a PNR must be determined and diversion procedures must be established.

SPECIAL OPERATIONS

GENERAL

The system design and the reliability of the engine installation of this aircraft comply with the criteria for Extended Twin Operations (ETOPS) flights set forth in AMC 20-6 (EASA) or

AC 120-42 A (FAA) or FAR 25-1535 (FAA) when the aircraft is configured, maintained and R operated in accordance with the provisions of the appropriate Airbus Industrie document "Standard for Extended Range Operations" in the latest approved revision which is the Airbus CMP (Configuration, Maintenance and Procedure) document.

This statement of ability does not constitute an approval to conduct Extended-Range Operations.

Section 6 of the Flight Manual refers to the approved Standard for Extended-Range Operations and the applicable limitations, procedures and performance references.

The operator is responsible for showing that he is complying with the regulation of his nation and for obtaining operational approval from his national authorities. The operator may amend this chapter, as needed.

The aircraft must be configured in accordance with the Airbus Industrie Standard for Extended-Range Operations. However, the authorities may under certain conditions allow the operator to conduct ETOPS flights with limited maximum diversion time (for example, 75 minute diversion time in a benign area of operation) without showing full compliance with these standards.

OPERATIONAL LIMITATIONS

DEFINITIONS

For the purpose of JAR-OPS 1-245 and FAR 121-161 Extended-Range Operations are those R intended to be conducted over a route that contains a point more than 60 minutes from an adequate airport at the selected one-engine-inoperative speed in still air and ISA (or prevailing delta ISA) conditions.

An adequate airport is an airport which satisfies the aircraft performance requirements applicable at the expected landing weight, and sufficiently equipped to be safely used. In particular, at the anticipated time of use, it should be available and equipped with the necessary services, including ATC, weather information and at least one let down aid for an instrument approach.

A suitable airport is a confirmed adequate airport which satisfies the dispatch weather minima requirements for ceiling and visibility within the required validity period. Airport conditions should also ensure that a safe landing with one engine and/or airframe system inoperative is possible.

SPECIAL OPERATIONS

AREA OF OPERATION

The maximum distance from an adequate airport must be determined for ISA (or prevailing delta ISA) and no-wind conditions, taking into account aircraft performance with one engine inoperative and the remaining engine operating at not more than MCT.

To determine the maximum distance from an adequate airport, the operator must define a diversion speed strategy as well as an aircraft reference weight for performance computation.

The same diversion speed strategy (Refer to FCOM 3.06) must be considered for :

- establishing the area of operation ;
- calculating the single-engine fuel planning,
- conducting the diversion in case of engine failure (conditions permitting).

The operator establishes the ETOPS reference gross weight for each route or area of operation. This must be a representative but conservative value of the aircraft gross weight at the critical point of the route or at the various critical points of all the routes included in the area of operation.

The-one-engine-inoperative descent and cruise speed law must be chosen so that the associated net flight path clears the enroute obstacles with the regulatory margin.

FCOM section 3.06 gives data for three speed schedules. The associated approved net flight paths are published in the section 6 of the Flight Manual.

When the diversion strategy is chosen, the maximum distance from a diversion airport, can be directly determined for different maximum diversion times, with the help of the tables provided in this section. The area of possible ETOPS operation can then be drawn on plotting charts.

Another way to determine the maximum distance to a diversion airport is to read the one-engine-inoperative cruise TAS (for the reference gross weight and at the FL for best TAS) in the cruise tables in section 3.06 taking into consideration the appropriate speed strategy and the minimum altitude for clearing possible obstacles. The maximum distance the aircraft can travel to a diversion airport is this one-engine-inoperative-TAS multiplied by the maximum allowed diversion time granted to the operator.

Operators whose authorities require that an approved one-engine-inoperative speed be published in the Flight Manual must use this approved speed.

SE0 001

EXTENDED RANGE OPERATIONS

DISPATCH CONSIDERATION

<u>MMEL</u>

The MMEL has been approved taking into consideration the duration of the average ETOPS flight and the maximum diversion time granted to the airframe/engine combination. The MMEL published by Airbus Industrie and approved by the French DGAC can be used to establish the airline MEL, which must be approved by the operator's national authorities. This MEL will probably be adapted to the airline network, environment and organization. Other determining parameters will be :

- The maximum and the average diversion times on the route.
- · The equipment of the enroute alternates.
- · The navigation and communication facilities.
- · The average meteorological conditions.

COMMUNICATION AND NAVIGATION FACILITIES

The aircraft communication system has provision to install three VHF transceivers and two HF radios ensuring full compliance with ETOPS requirements on any kind of route.

The aircraft navigation system meets the ETOPS requirements for en route navigation.

The aircraft has three inertial reference systems which, in conjunction with 2 FMS comply with MNPS criteria and this combination of systems is approved as the sole means of navigation for flight up to the maximum aircraft range.

See the MEL for a definition of the authorized dispatch configuration.

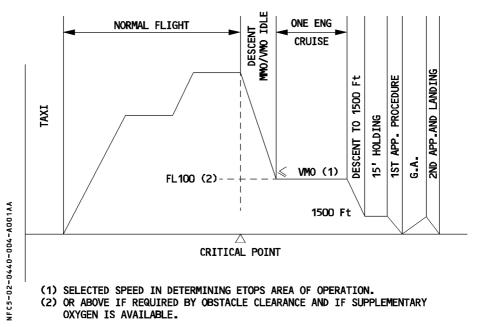
<u>Note</u> : For operation within the MNPS area, airlines must obtain approval from their national authorities.

FUEL AND OIL SUPPLY

The aircraft fuel and oil supply must be adequate to allow the aircraft to reach its destination or a planned alternate after the combined failures of an engine and pressurization or the failure of pressurization alone at the critical point on the route. Planners must consider forecast wind and temperature conditions, as well as forecast icing conditions.

The operator must establish a routine for ETOPS critical fuel planning and compare it with the standard (non-ETOPS) fuel planning.

ELECTRICAL GENERATORS


Three generators are required for dispatch.

ETOPS FUEL SCENARIOS

For establishing the ETOPS critical fuel reserves, the planner must consider two diversion scenarios.

Pressurization failure + engine failure

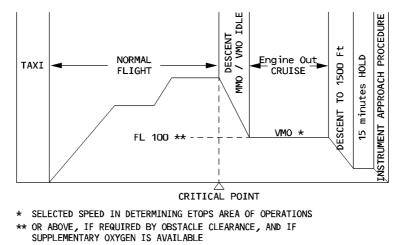
Pressurization failure

Same flight profile, but with 2 engines operating and diversion cruise set at LRC.

Fuel requirements

For each scenario, the required block fuel must be computed in accordance with the operator's ETOPS fuel policy and using the regulatory ETOPS critical fuel reserves described below.

Depending on the strategy and the one-engine-inoperative speed selected for the single-engine diversion scenario, either of these two scenarios may result in the higher fuel requirement.


The scenario resulting in the higher fuel requirement is the ETOPS critical fuel scenario, and the associated minimum block fuel requirement is the ETOPS critical fuel plan.

AIRBUS TRAINING A320	SPECIAL OPERATIONS	2.04.40	P 4a
FLIGHT CREW OPERATING MANUAL	EXTENDED RANGE OPERATIONS	SEQ 001	REV 40

FAA ETOPS FUEL SCENARIOS

For establishing the ETOPS critical fuel reserves, the operator must consider three diversion scenarios.

1. Pressurization Failure + Engine Failure

2. Pressurization Failure

Same Flight Profile as above, but all engines operating and Diversion Cruise Speed* set to LRC.

3. Engine Failure

Same Flight Profile as above, but standard descent speed and Diversion Cruise at the FL** appropriate to gross engine out ceiling at the selected ETOPS diversion speed.

FAA FUEL REQUIREMENTS

For the first two scenarios, involving depressurization, the required block fuel must be calculated in accordance with the operator's ETOPS fuel policy and using the regulatory ETOPS critical fuel reserves described on the page 5a.

Depending on the strategy and the one-engine-inoperative speed selected for the single-engine diversion strategy, either of these two scenarios may result in the higher fuel requirement.

The scenario resulting in the higher fuel requirement is the ETOPS critical fuel scenario, and the associated minimum block fuel requirement is the ETOPS critical fuel plan.

It is not necessary to calculate the 3rd scenario (engine failure), as this scenario is never critical, due to the higher diversion flight level.

ETOPS CRITICAL FUEL RESERVES

For the computation of ETOPS critical fuel reserves and of the complete ETOPS critical fuel planning, the diversion fuel must include the following fuel provisions :

- · fuel burn-off from the critical point to the end of descent (for example 1500 feet) at the diversion airport,
- · 5 % of the above fuel burn-off as contingency fuel,
- · fuel for 15 minutes of holding at 1500 feet and green dot speed,
- · fuel for first (IFR) approach, a go-around and a second (VFR) approach,
- · 5 % fuel mileage penalty or a demonstrated performance factor,
- · effect of any Configuration Deviation List (CDL) or MEL item,
- · if icing conditions are forecast :
- * effect of Nacelle Anti Icing (NAI) and Wing Anti Icing (WAI) systems,
- * effect of ice accretion on the unheated surfaces of the aircraft :

The fuel provisions associated with the effects of NAI and WAI systems and of ice accretion on the unheated surfaces are adjusted to take into account the horizontal extent of the forecast icing areas (exposure time).

The fuel provision factor for ice accretion on the unheated surfaces is a percentage equal to five times the forecast exposure time in hours. For example, assuming a one-hour exposure en route to and (e.g. the 15 minute holding) at the diversion airport, the fuel provision is 5 % of the fuel burned during the considered exposure time. If moderate icing is forecast, the above fuel provision is divided by two.

· If the APU is needed as a power source (MEL), its fuel consumption must be considered: 80 kg/h (APU GEN ON, APU BLEED OFF).

In view of our experience, Airbus Industrie recommends that the operator considers the following non mandatory fuel practices :

- \cdot Include the effect of a demonstrated performance factor, in all standard and ETOPS fuel requirement computations,
- \cdot Include a contingency fuel provision from departure to the Critical Point (CP), when computing the ETOPS critical fuel planning.

SPECIAL OPERATIONS

FAA ETOPS CRITICAL FUEL RESERVES

For the computation of the ETOPS critical fuel reserves and of the complete ETOPS critical fuel planning, the diversion fuel must include the following fuel provisions :

- Fuel burn-off from the critical point to the end of descent at the alternate airport
- \cdot Fuel for 15 minutes of holding at 1500 feet and green dot speed at the alternate
- · Fuel for an instrument approach and landing
- · Fuel to account for errors in wind forecasting (5 % wind or 5 % fuel)
- · Fuel to account for aircraft deterioration (demonstrated performance factor or 5 %)
- · Fuel to account for any Configuration Deviation List (CDL) or MEL item
- · Fuel to account for Icing Effects (if forecast) for the critical mission
- Fuel to account for APU use (if APU is a required power source)

Wind Errors

A 5 % wind speed factor (i.e. an increment to headwind or a decrement to tailwind) on the actual forecast wind should be used to account for potential errors. However if the operator is not using the actual forecast wind based on a wind model acceptable to the certification authorities then 5 % of the fuel for the critical scenario is required as a reserve fuel.

<u>lcing</u>

The most critical scenario must be compensated for the greater of :

(A) The effect of airframe icing during 10 % of the time during which icing is forecast, including ice accumulation on unproptected surfaces, and the fuel used by engine and wing anti-ice during this period.

(B) Fuel for engine and wing anti-ice for the entire time during which icing is forecast. The effect of ice accretion on unprotected surfaces is equal in percentage to three times the exposure time in hours. For example, assuming a two-hour exposure time, the fuel provision is $3 \times 2 = 6$ % of the fuel burned during the considered exposure time. If moderate icing is forecast, the above fuel provision is divided by two.

Note : The ETOPS icing fuel reserve is always limited by (B).

Unless a reliable icing forecast is available, icing may be presumed to occur when the Total Air Temperature (TAT) is less than $+10^\circ$ C, or if the outside air temperature is between 0° C and -20° C with a relative humidity of 55 % or more.

<u>APU</u>

Fuel consumption of 80 kg/hr or 176 lb/hr (APU GEN ON, APU BLEED OFF). In view of our experience, Airbus recommends that the operator consider the following non mandatory fuel practices :

- 1. Include the effect of a demonstrated performance factor, in all standard and ETOPS fuel requirement computations.
- 2. Include a contingency fuel provision from departure to the Critical Point (CP), when computing the ETOPS critical fuel planning.

AIREUS TRAINING A320	SPECIAL OPERATIONS	2.04.40	P 6
FLIGHT CREW OPERATING MANUAL	Extended range operations	SEQ 001	REV 40

- R The operator must compare the entire ETOPS critical fuel planning for the ETOPS critical fuel
- R scenario with the standard fuel planning computed in accordance with the company fuel
- R policy and applicable operational requirements. The higher of the two fuel requirements
- R must be considered as the minimum required block fuel for the flight.

DISPATCH FUEL REQUIREMENT FROM CRITICAL POINT TO LANDING

ETOPS diversion fuel requirements for dispatch are provided at the end of this section. Data for the engine failure case alone are not provided as this scenario is never critical.

WEATHER MINIMA

Weather forecasts for en route alternates must meet the operator's applicable weather minimun requirements. If the applicable requirement is AC 120-42A or AC 120-42B or AMC 20-6, the following applies :

An airplane cannot be dispatched unless the meteorological forecasts at en route alternate

R airports meet the weather minimums listed here for the applicable time window which is

- R based on the earliest expected time of landing and the latest expected time of landing, with
- R or without an additional margin as required by applicable regulation.
 - A. AC 120-42A dispatch weather minima (FAA)

AIRPORT EQUIPMENT	Ceiling (ft)	Visibility (m)		
1 ILS/MLS	DH + 400	Greater of (3200, published minima + 1600)		
2 ILS/MLS on separate runways *	DH + 200	Greater of (1600, published minima + 800)		
Non precision approach	Greater of (800, MDH + 400)	Greater of (3200, published minima + 1600)		
CAT II/CAT III capability with engine failure	Lower than above minima, approved on a case-by-case basis considering aircraft performance under failure conditions			

* separate runways are runways which do not touch each other.

DH : decision height

MDH : minimum descent height

R B. AC 120-42B dispatch weather minima

R

AIRPORT EQUIPMENT	Ceiling (ft)	Visibility (m)		
1 ILS/MLS and Non precision approach	DH + 400	Published minima + 1600 m		
2 ILS/MLS on different suitable runways	DH + 200	Published minima + 800 m		
CAT II/CAT III capability with engine failure	Lower than above minima, approved on a case-by-case basis considering aircraft performance under failure conditions			

SPECIAL OPERATIONS

2.04.40

EXTENDED RANGE OPERATIONS

SEQ 001 | REV 40

Ρ7

R <u>C. AMC 20–6 dispatch weather minima (EASA)</u>

- The operator must use either table 1 or table 2, but not a combination of both.
- R Table 1

Approach Facility Configuration	Alternate Airfield Ceiling	Weather Minima Visibility				
	A ceiling derived by adding 400 feet to the authorised DH, MDH (DA/MDA) or circling minima	A visibility derived by adding 1500 meters to the authorised landing minima				
	The weather minima below apply at airports which are equipped with precision or non-precision approaches on at least two separate runways (two separate landing surfaces)					
operational navigation facilities	A ceiling derived by adding 200 feet to the higher of the two authorised DH/MDH (DA/MDA) for the approaches	800 meters to the higher of the				

<u> Table 2</u>

Type of Approach	Planning Minima (RVR visibility required and ceiling if applicable) Aerodrome with				
	at least 2 separate approach procedures based on 2 separate aids serving 2 separate runways	at least 2 separate approach procedures based on 2 separate aids serving 1 runway	or	at least 1 approach procedure based on 1 aid serving 1 runway	
Precision Approach Cat II, III (ILS, MLS	Precision Approach Cat I Minima	Non-Precision Approach Minima			
Precision Approach Cat I (ILS, MLS)	Non-Precision Approach Minima	Circling minima or, if not availabile non-precision approach minima plus 200 ft/1000 m			
Non-Precision Approach	The lower of non-precision approach minima plus 200 ft/1000 m or circling minima	The higher of circling minima or non-precision approach minima plus 200 ft/1000 m			
Circling Approach		Circling minima			

DIVERSION DURING EXTENDED RANGE OPERATIONS

DIVERSION DECISION MAKING

The technical criteria governing a re-routing or diversion decision can be classified into four categories, as follows :

- Loss of MNPS capability, before entering the MNPS area (as applicable).
- Weather minima at diversion airport(s) going below the company/crew en-route minima, before reaching the ETOPS Entry Point, or diversion airport(s) becoming unsuitable for any reason.
- Failure cases requiring a diversion to the nearest airport (cases leading to a LAND ASAP message on the ECAM and/or in the QRH).
- Failure cases resulting in increased fuel consumption, exceeding the available fuel reserves.

Comments and Recommendations

· Electrical generation

If one IDG fails, a diversion is required in case of :

- Blue hydraulic circuit low level, low air pressure or overheat, or
- APU no start, or
- APU or APU generator inoperative, or
- Second IDG failure.
- · Fuel system

Some failure cases may lead to fuel gravity feeding which implies flight at lower altitude or to some fuel being unusable. The flight crew's evaluation of the actual situation and the fuel remaining may lead to the decision that a diversion is required.

· Hydraulic system :

If low level, low air pressure or overheat on blue hydraulic circuit, a diversion is required in case of :

- One IDG failure, or
- APU no start, or
- APU/APU GEN failure.
- · APU :
 - If APU/APU GEN fails, a diversion is required in case of :
 - Blue hydraulic circuit low level, low air pressure or overheat, or
 - One IDG failure.

DIVERSION PERFORMANCE DATA

FCOM section 3.06 gives three single engine descent and cruise procedures :

- 1. The standard strategy.
- 2. The obstacle strategy.
- 3. Fixed speed strategies (ETOPS).

EXTENDED BANGE OPERATIONS

For ETOPS operations, any one of the above diversion strategies can be used provided that the selected strategy and speed schedule are used in :

- \cdot establishing the area of operation (maximum diversion distance),
- · calculating the diversion fuel requirements for the single-engine ETOPS fuel scenario.
- · demonstrating the applicable obstacle clearance requirements (net flight path and net ceiling).

During the diversion, the flight crew is expected to use the planned speed schedule. However, based on the evaluation of the actual situation, the pilot in command has the authority to deviate from this planned one-engine-inoperative speed.

GUIDELINES FOR DIVERSION PROCEDURE

- Complete the related failure procedure.
- Inform ATC.
- Initiate the descent.
- Determine which enroute alternate is the most suitable (per company procedure).
- Divert to the chosen enroute alternate.
- Comply with the pre-planned diversion strategy and speed schedule, or adjust the speed schedule, as dictated by the evaluation of the actual situation.

Note: For detailed guidelines and procedures in conducting the diversion (lateral and vertical navigation), see the FMGS Pilot's Guide (FCOM Volume 4).

PROCEDURES

The SOP (FCOM 3.03) and ABN and EMER procedures (FCOM 3.02) apply. For ETOPS flights, the flight crew must complete them using the procedures given below :

COCKPIT PREPARATION

Fuel

Before each flight, the flight crew must check that the fuel crossfeed valve is operating correctly :

- FUEL X FEED ON On the ECAM FUEL page check that the fuel crossfeed valve is open (indication is inline green).
- Check that the fuel crossfeed valve is closed.

ABN AND EMER PROCEDURES

ELECTRICAL EMERGENCY CONFIGURATION :

In case of electrical emergency configuration, it may be better to study the STATUS on the paper checklist, after having applied ECAM actions.

The flight crew must complete the ECAM procedure using the following :

Air conditioning :

As cockpit and cabin temperature control is lost, it is recommended to open the cockpit door.

Fuel :

As all fuel pumps are lost, the engines are fed by gravity. Refer to 3.02.28 (Fuel gravity feed procedure).

Engine anti-ice :

Engine anti-ice valves are permanently open, although the ECAM memo ENG A. ICE is not displayed on the ECAM (except if the ENG A. ICE pushbutton is at ON).

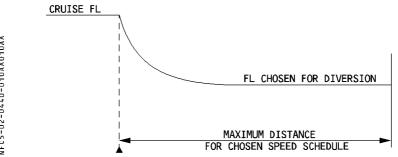
Wing anti-ice :

If only one ENG BLEED is available, PACK 1 must be switched OFF, to avoid having both packs and wing anti-ice supplied by a single bleed source.

BLUE HYDRAULIC LOW LEVEL

Start the APU to ensure availability of the APU generator.

ENGINE OR IDG FAILURE


Start the APU and use the APU electrical channel.

PERFORMANCE

The two following cases result in a fuel consumption increase :

- RAT extended (Refer to ELEC EMER proc. 3.02.24).
- in electrical emergency configuration, the engine anti-ice valves are permanently open.

MAXIMUM DISTANCE (Still air) TO DIVERSION AIRPORT IN NAUTICAL MILES

A320 SIMULATOR FLIGHT CREW OPERATING MANUAL

AIRBUS TRAINING

EXTENDED RANGE OPERATIONS

SEQ 001 REV 38

Determination of 60 minutes maximum diversion distance (JAR-OPS 1.245)

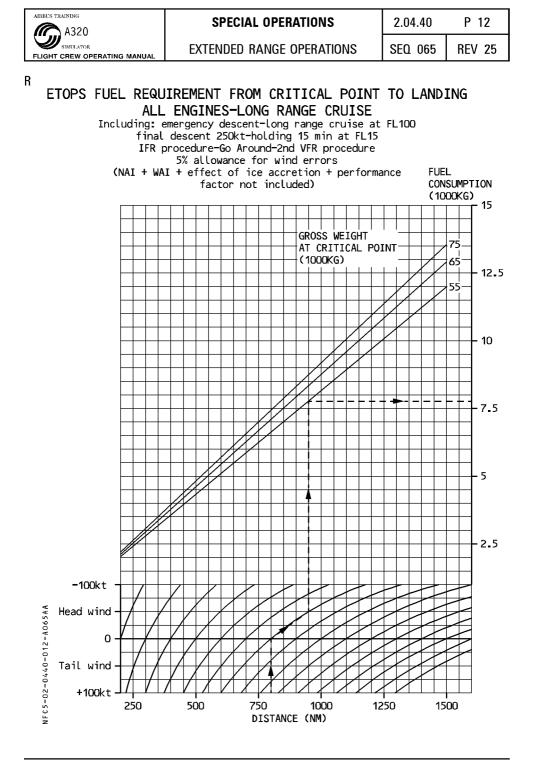
Use the distance given within the table below to decide if a route is an ETOPS one according to JAR-OPS 1.245.

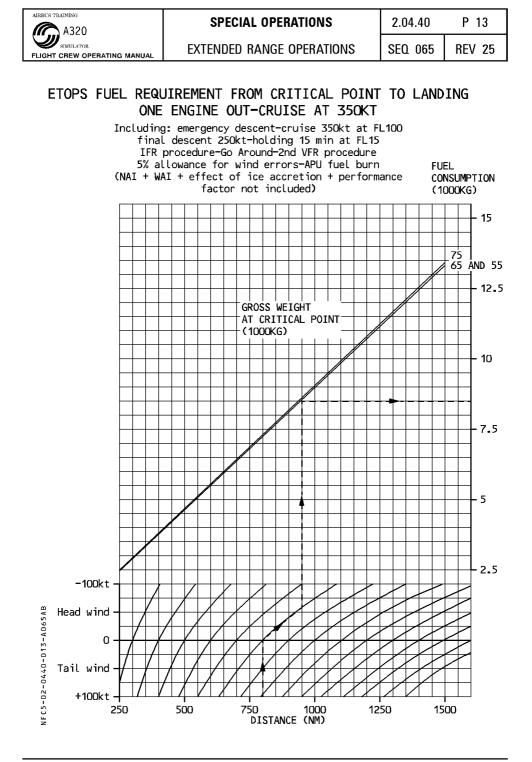
The following computation conditions have been used in accordance with the interpretation of the JAR-OPS 1.245 :

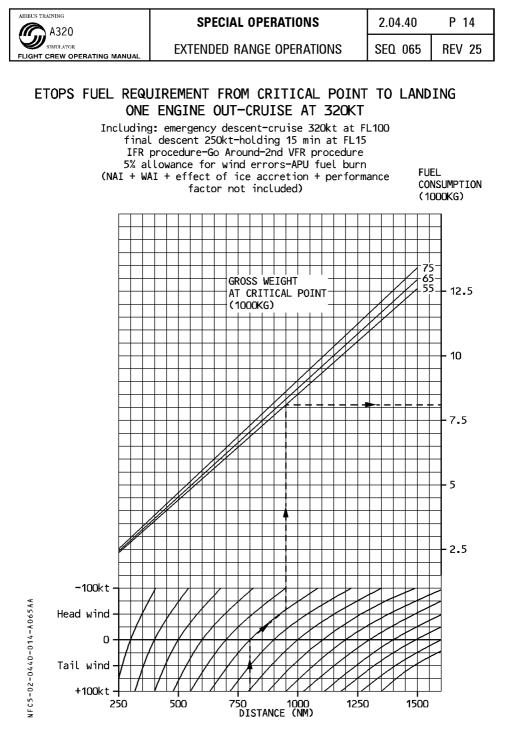
- Reference weight : the aircraft gross weight after one hour of flight having taken off at sea level at the maximum structural takeoff weight given by the flight manual
- ISA conditions
- No wind
- Diversion level after engine failure : FL170
- Single engine diversion speed schedule : VMO/MMO

<u>Note</u>: using the JAR-OPS 1.245 method, obstacles have not to be considered to determine if a route is or is not an ETOPS route.

Aircraft	MT	Distance (NM)	
AllCial	(kg)	(lb)	Distance (INIVI)
A320-111	66000	145504	393
CFM56-5A1	68000	149913	390
	66000 to 67000	145504 to 147708	391
	68000 to 70000	149913 to 154322	388
A320-211/212	71500	157629	385
CFM56-5A1/A3	73500	162038	382
	75500	166447	379
	77000	169754	376
A000 01 4	70000	154322	406
A320-214 CFM56-5B4	71500	157629	406
GI WI30-3D4	73500 to 77000	162038 to 169754	397
	66000 to 68000	149913 to 154322	414
4000 001	70000 to 71500	154322 to 157629	411
A320–231 IAE V2500-A1	73500	162038	408
TAL V2500-AT	75500	166447	405
	77000	169754	403
	70000	154322	410
A320-232/233 IAE V2527-A5/	71500	157629	409
IAE V2527-A5/	73500	162038	407
	75500 to 78000	166447 to 171959	403


SEQ 140


P 11 REV 31


MAXIMUM DISTANCE (Still air) TO DIVERSION AIRPORT IN NAUTICAL MILES (cont'd)

ISA							
SPEED	A/C WEIGHT FL FOR		DIVERSION TIME (MIN)				
SCHEDULE	AT CRITICAL Point (KG)	DIVERSION	60	90	120	150	180
МСТ/VМО	50 000	160	414	616	818	_	_
	55 000	160	413	614	815	1017	1219
	60 000	160	412	612	812	1012	1213
	65 000	160	410	608	807	1007	1206
	70 000	160	408	605	802	1000	1198
	75 000	160	405	600	795	992	1188
MCT/320 KT	50 000	160	412	613	814	-	-
	55 000	160	412	613	814	1015	1215
	60 000	160	412	612	812	1012	1213
	65 000	160	410	608	807	1007	1206
	70 000	160	408	605	802	1000	1198
	75 000	160	405	600	795	992	1188

ISA + 10							
SPEED	A/C WEIGHT	FL FOR	DIVERSION TIME (MIN)				
SCHEDULE	AT CRITICAL Point (KG)	DIVERSION	60	90	120	150	180
MCT/VMO	50000	160	422	628	_	-	-
	55000	160	422	626	831	1036	1242
	60000	160	420	624	827	1032	1236
	65000	160	418	620	823	1026	1229
	70000	160	416	616	817	1019	1221
	75000	160	413	611	811	1010	1211
MCT/320KT	50000	170	421	626	831	-	-
	55000	160	421	626	830	1035	1239
	60000	160	420	624	827	1032	1236
	65000	160	418	620	823	1026	1229
	70000	160	416	617	818	1019	1221
	75000	160	413	612	811	1011	1211

P 1

REV 40

R ENGINE INTERMIX TYPE 1

GENERAL

- R The following information provides the conditions and procedures necessary in order to
- R temporarily operate an A318/A319/A320/A321 aircraft when a CFM56–5B Single Annular
- R Combustor (SAC) engine is intermixed with a CFM56–5B Double Annular Combustor (DAC)
- R engine.
- R This engine intermix configuration is indicated in the cockpit with the following placard :
- R "CAUTION : ENGINE INTERMIX TYPE 1".

ENGINE PARAMETERS

Engine parameters differ significantly, when the engines are at idle :

EGT : Up to 250° C higher on the DAC engine.

FUEL FLOW : Up to 25 % higher on the DAC engine.

- N1 : Higher on the DAC engine.
- N2 : Lower on ground on the DAC engine, higher in flight on the DAC engine.

CROSSBLEED ENG START

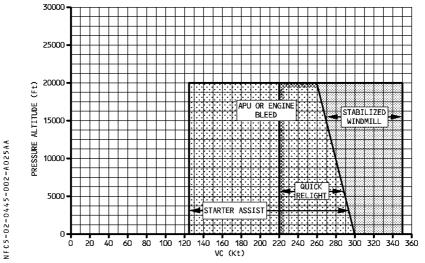
The DAC engine has insufficient acceleration capability to sustain idle speed with a large bleed offtake, when it operates with only 20 injectors. Therefore, it is necessary to preset a 30 % N1 on the supplying engine before launching the start sequence.

TAKEOFF PROCEDURE

- The PF must progressively adjust engine thrust in two steps :
 - Step 1 : Idle to 50 % N1.
 - Brakes released, when the 50 % N1 is stabilized on both engines.
 - · Step 2 : Both engines N1 to takeoff thrust.
 - This procedure enables a significantly slower acceleration from ground idle to
 - N1 = 50 % for the double annular combustor.
- Other standard operative procedures apply for takeoff.

ENGINE RESPONSE

In flight, when the aircraft is in clean configuration, the DAC engine may accelerate from idle more slowly than the SAC engine. This is particularly evident, if the acceleration follows a deceleration. There is no significant effect on aircraft handling. This difference in engine response disappears when the slats are extended.


FLIGHT CREW OPERATING MANUA
SIMULATOR
A320
AIRBUS TRAINING

SPECIAL OPERATIONS

ENGINE INTERMIX OPERATIONS

ENGINE RELIGHT

- The DAC engine relight envelope is more restrictive than the SAC engine relight envelope. R
- Therefore, in the case of an engine intermix, the flight crew must use the DAC engine R R
- relight procedure with the corresponding chart (see chart below).

P 3

ENGINE INTERMIX TYPE 2

GENERAL

The following information provides the conditions and procedures necessary in order to temporarily operate an A318/A319/A320/A321 aircraft when a CFM 56–5B/P SAC (Single Annular Combustor) engine is intermixed with a CFM56–5B/3 TI (Tech Insertion) engine. This engine intermix configuration is indicated in the cockpit with the following placard : "CAUTION : ENGINE INTERMIX TYPE 2".

ENGINE PARAMETERS

In the case of only one operative pack configuration (only one pack OFF) :

- N1 : At idle up to 9 % higher on the CFM56-5B/3 TI engine, on ground or in flight in clean configuration.
- N2 : At idle up to 11 % higher on the CFM56-5B/3 TI engine, on ground or in flight in clean configuration.

TAKEOFF PROCEDURE

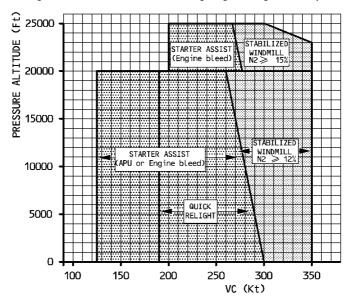
In the case of only one operative pack configuration, due to the difference in N2 at idle between engines, the following takeoff procedure is recommended :

- The PF progressively adjusts engine thrust in two steps :
 - Step 1 : From idle to about 50 % N1 on brakes.
 - Step 2 : From both engines at similar N1 to takeoff thrust after brakes release.
- Other standard operative procedures apply for takeoff.

ENGINE RESPONSE

In the case of only one operative pack configuration, due to the difference in N2 at idle between engines, the CFM56–5B/3 TI engine may accelerate from idle to high thrust faster than the CFM56–5B/P SAC engine when the aircraft is on ground or in flight in clean configuration. There is no significant effect on aircraft handling.

The difference in engine response disappears in flight when the slats are extended.


<u>Note</u>: Depending on the FADEC standard, the flight crew may observe a different deceleration between the two engines (CFM56–5B/P engine is faster to decelerate) when the aircraft is above FL100 and in unsymmetrical bleed configuration or with the APU BLEED ON.

SPECIAL OPERATIONS

ENGINE INTERMIX OPERATIONS

For the CFM56-5B/3 TI engine, the maximum altitude for the engine relight envelope is reduced, compared to the CFM56–5B/P SAC engine. Therefore, in the case of an engine intermix, the flight crew must use the following engine relight envelope :

AIRBUS TRAINING	
A320	
SIMULATOR	
FLIGHT CREW OPERATING	MAN

141

RNP

TR Nº 689-1 PAGE 3 OF 5

GENERAL

The aircraft navigation system, required by regulation to fly within a Required Navigation Performance (RNP) airspace, shall comply with RNAV functionality criteria and with navigation position accuracy and integrity criteria.

When referring to RNP-X, the value of X is the navigation accuracy expressed in NM, which has to be met with a probability of 95 %.

An RNP value can be associated with an airspace, a route, a SID, a STAR, a RNAV approach, or an RNAV missed approach procedure.

Depending on the RNP value, and on the airspace environment (ground radio navaid), different navigation equipment may be necessary.

An operational approval from the airline's national authorities may be necessary.

NAVIGATION SYSTEM CAPABILITY (for reference only)

European BRNAV (RNP-5) and P-RNAV (RNP-1) capability meets the certification requirements of JAA TGL 2 and TGL 10. Terminal and en-route RNAV operations comply with the certification requirements of the FAA Advisory Circular 90-100.

R RNP-4 capability in oceanic or remote areas complies with FAA Notice 8400.33. RNP-10 capability in oceanic or remote areas complies with paragraph 12.b (1) of FAA Notice 8400.12a., or with paragraph 12.a. or 12.b (5), if GPS is installed and is operative. Navigation system with the GPS PRIMARY function (if GPS installed) meets the certification requirements of FAA AC 20-130A and TSO C 129A in class C1 (for navigation system with multiple sensor inputs including GPS).

RNP CAPABILITY

REV 38

GENERAL

The aircraft navigation system, required by regulation to fly within a Required Navigation Performance (RNP) airspace, shall comply with RNAV functionality criteria and with navigation position accuracy and integrity criteria.

When referring to RNP-X, the value of X is the navigation accuracy expressed in NM, which has to be met with a probability of 95 %.

An RNP value can be associated with an airspace, a route, a SID, a STAR, a RNAV approach or a RNAV missed approach procedure.

Depending on the RNP value, and on the airspace environment (ground radio navaid), different navigation equipment may be necessary.

An operational approval from the airline's national authorities may be necessary.

NAVIGATION SYSTEM CAPABILITY (for reference only)

European BRNAV (RNP-5) and P-RNAV (RNP-1) capability meets the certification requirements of JAA TGL 2 and TGL 10. Terminal and en-route RNAV operations comply with the certification requirements of the FAA Advisory Circular 90-100.

RNP-10 capability in oceanic or remote areas complies with paragraph 12.b (1) of FAA Notice 8400.12a., or with paragraph 12.a. or 12.b (5), if GPS is installed and is operative. Navigation system with the GPS PRIMARY function (if GPS installed) meets the certification requirements of FAA AC 20-130A and TSO C 129A in class C1 (for navigation system with multiple sensor inputs including GPS).

RNP CAPABILITY

In order to match a given RNP value, the FMS-estimated position accuracy (also called Estimated Position Error) must be better than the RNP value. Obviously, this is dependent on the FMS navigation-updating mode (GPS/DME/DME, VORDME, or IRS).

On the MCDU PROG page, the required and the estimated position accuracy are displayed, and determine the HIGH/LOW accuracy indication (refer to FCOM 1.22.20).

The required accuracy can be a default value, which is either a function of the flight phase, or a navigation database procedure value, or a value manually entered by the crew.

When flying in an RNP environment, the crew can insert the appropriate RNP value in the REQUIRED ACCUR field of the PROG page.

- When HIGH is displayed, the RNP requirement is estimated to be fulfilled.

 When LOW is displayed, the RNP requirement is estimated not fulfilled. In this case : The crew crosschecks navigation with raw data, if available.

· If the crosscheck is negative, or if raw data is unavailable, the crew informs the ATC. When leaving the RNP environment, the crew will clear the manually-entered required accuracy.

AIRBUS TRAINING	SPECIAL OPERATIONS	2.04.51	P 2
SIMULATOR FLIGHT CREW OPERATING MANUAL	RNP	SEQ 001	REV 38

Without GPS PRIMARY function

RNP accuracy criteria are met, provided radio navaid coverage supports it for :

- RNP-1 en route and in the terminal area, provided a required accuracy of 1NM(1) is checked, or manually entered in the MCDU.
- RNP-0.3 in approach, provided a required accuracy of 0.3NM(1) is checked, or manually entered in the MCDU.
- <u>Note</u> : (1) It is possible to enter the radial equivalent to the specified Crosstrack (XTK) accuracy, that is the RNP multiplied by 1.2, the EPE being an estimated radial position error.

With the GPS PRIMARY function

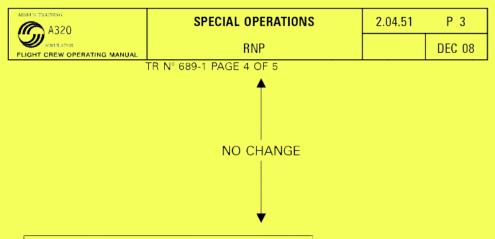
RNP requirements are met, provided GPS PRIMARY is available, for :

- RNP-1 en route
- RNP-0.5 in the terminal areas, provided the AP or FD in NAV mode is used.
- RNP-0.3 in approach, provided the AP or FD in NAV mode is used.

BRNAV IN EUROPEAN AIRSPACE

In this airspace, radio navaid coverage is assumed to support RNP-5 accuracy. The minimum required equipment to enter BRNAV airspace is :

- One RNAV system, which means :
 - · One FMGC
 - · One MCDU
- · One VOR or one GPS receiver for FM navigation update
- One DME or one GPS receiver for FM navigation update
 - · One IRS
- Flight Plan Data on two NDs.


PROCEDURES

When GPS PRIMARY is not available, periodically crosscheck the FM position with navaid raw data.

Manual selection of a required accuracy on the MCDU is optional.

 If manual entry of a required accuracy is desired, enter 5NM or use the radial equivalent to 5NM XTK accuracy, that is 6.1NM.

When leaving RNP-5 airspace, or when entering the terminal area, revert to the default required accuracy, or enter the appropriate value on the MCDU.

R RNP-4 OR RNP-10 IN OCEANIC OR REMOTE AREAS

In this kind of airspace, the aircraft is expected to fly for a long period of time outside radio navaid coverage.

- R The minimum required equipment to enter a RNP-4/RNP-10 airspace is :
- R Two long range navigation systems, which mean :
- R Two FMGC (or 1 FMGC + 1 BACK UP NAV)
- R · Two MCDU
- R For RNP-10, one GPS if required by flight time outside radio navaid coverage. For aircraft without GPS the flight time outside radio navaid coverage is limited. According
- R to FAA Notice 8400.12A, this limitation is :
- R × 6.2 hours since IRS ground alignment, or
- R * 5.7 hours since last FM radio update.
- R There is no limitation for aircraft fitted with GPS.
- R For RNP-4, two GPS are required.
- R · Two IRS

R Refer also to Regional Supplementary Procedures of ICAO Doc 7030 for specific

R requirements in a particular airspace.

PROCEDURES

- R The manual selection of a required accuracy on MCDU is optional.
- R If a manual entry of a required accuracy is desired, the flight crew must manually enter:
- R For RNP-10, enter 10NM or use the radial equivalent to 10NM XTK accuracy that is
- R 12.2NM.
- R For RNP-4, enter 4NM or use the radial equivalent to 4NM XTK accuracy that is 4.9NM.

AIRBUS TRAINING A320	SPECIAL OPERATIONS	2.04.51	P 3
	RNP	SEQ 103	REV 38

- If one of the following MCDU or ECAM messages is displayed, check navigation accuracy with the navaid raw data, or with the GPS MONITOR page (if GPS installed):
 NAV ACCUR DOWNGRAD
 - · FMS1/FMS2 POS DIFF
 - · CHECK IRS 1(2)(3)/FM POSITION
 - · ECAM : FM/GPS POS DISAGREE (if GPS installed)
- If the accuracy check confirms that RNP-5 capability is lost, or if both FMGCs have failed : Inform the ATC, and revert to conventional navigation.
- If the accuracy check confirms that only one FMGC position is incorrect, resume navigation with the other FMGC.

In inertial navigation, BRNAV capability is maintained for 2 hours, independently of the estimated accuracy displayed on the MCDU.

RNP-10 IN OCEANIC OR REMOTE AREAS

In this kind of airspace, the aircraft is expected to fly for a long period of time outside radio navaid coverage.

For aircraft without GPS, flight time outside radio navaid coverage is limited. According to FAA Notice 8400.12A, this limitation is :

- 6.2 hours since IRS ground alignment, or
- 5.7 hours since the last the FM radio update.

There is no limitation for aircraft fitted with the GPS.

Minimum required equipment to enter RNP-10 airspace is :

- Two long range navigation systems, which means :
 - · Two FMGC
 - · Two MCDU
 - · One GPS required by flight time outside radio navaid coverage
 - · Two IRS

Also refer to the Regional Supplementary Procedures (ICAO Doc 7030) for specific requirements in a particular airspace.

PROCEDURES

Manual selection of a required accuracy on the MCDU is optional.

 If manual entry of a required accuracy is desired, enter 10NM or use the radial equivalent to 10NM XTK accuracy, that is 12.2NM.

AIRBUS TRAINING A320	SPECIAL OPERATIONS	2.04.51	P 4
SIMULATOR FLIGHT CREW OPERATING MANUAL	RNP	SEQ 103	REV 38

When leaving RNP-10 airspace, revert to the default required accuracy or enter the appropriate value.

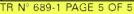
- If one of the following MCDU or ECAM messages is displayed, check navigation with

- POSITION MONITOR page, ISDU or IRS 1(2)(3) pages, and GPS MONITOR page (if GPS installed) :
 - FMS1/FMS2 POS DIFF
 - · CHECK IRS 1(2)(3)/FM POSITION
 - · ECAM : FM/GPS POS DISAGREE (if GPS installed)
 - Use the AP, with the navigation system checked correct.
 - If unable to determine which system is correct, inform the ATC, and look for navaid raw data confirmation as soon as possible.

In inertial navigation, the RNP-10 capability is maintained for 5.7 hours, since the last radio update (according to FAA Notice 8400.12A), independently of the estimated accuracy displayed on the MCDU.

R **P-RNAV/RNP-1 TERMINAL PROCEDURES**

- R For terminal procedures requiring P-RNAV or RNP-1 capability, the flight crew can assume
- R that the radio navaid coverage supports the RNP-1 accuracy. Otherwise, the procedure may
- R specify that GPS equipment is required (refer to the published procedure chart). The
- R minimum equipment required to fly a P-RNAV or RNP-1 procedure is :
- R One RNAV system, which includes :
- R · One FMGC


R

- R · One MCDU
- R One GPS receiver, or one VOR and one DME, for FM navigation update*
- R · One IRS, and
- R One FD in NAV mode.
- R Flight Plan data displayed on both NDs.
- R *GPS may be required for RNP-1 terminal procedures.
- R For terminal procedures with legs below the MSA, or with legs that may not have sufficient
- R radar coverage, two RNAV systems may be mandated by the procedure chart.

R **PROCEDURES**

- R The terminal procedure (RNAV SID, RNAV STAR, RNAV TRANSITION, ...) must be loaded
- R from the FM navigation database and checked for reasonableness, by comparing the
- R waypoints, tracks, distances and altitude constraints (displayed on the F-PLN page), with
- R the procedure chart.
- R The flight crew must not modify the procedure, that is loaded from the navigation database,
- R unless instructed to do so by the ATC (DIR TO, radar vectoring, insertion of waypoints
- R loaded from the navigation database).

AIBBUS TRACKING A320	SPECIAL OPERATIONS	2.04.51	P 4
FLIGHT CREW OPERATING MANUAL	RNP		DEC 08

R When leaving RNP airspace, revert to the default required accuracy or enter the appropriate value.

In inertial navigation, the RNP-10 capability is maintained for 5.7 hours, since the last radio update (according to FAA Notice 8400.12A), independently of the estimated accuracy displayed on the MCDU.

- R For RNP-4 with GPS PRIMARY LOST, the RNP-4 capability is maintained until NAV ACCUR
- R DOWNGRAD appears.

P-RNAV/RNP-1 TERMINAL PROCEDURES

AIRBUS TRAINING A320	SPECIAL OPERATIONS	2.04.51	Ρ5
SIMULATOR FLIGHT CREW OPERATING MANUAL	RNP	SEQ 001	REV 40

• If GPS is required for the P-RNAV/RNP-1 procedure :

- Before starting the departure/approach procedure, check that GPS PRIMARY is available (GPS PRIMARY displayed on the MCDU PROG page).
- If GPS PRIMARY is not available before starting the procedure, inform the ATC, and request another departure/arrival procedure that does not require GPS.
- If GPS PRIMARY is lost while flying the procedure, inform the ATC of this loss of capability, and follow ATC instructions.

• If GPS is NOT required for the P-RNAV/RNP-1 procedure :

- Check that GPS PRIMARY is available (GPS PRIMARY displayed on the MCDU PROG page).
- IF GPS PRIMARY is not available :
- Crosscheck the FM position with the navaid raw data, before starting the procedure.
- Check or enter RNP-1 in the REQUIRED field of the MCDU PROG page, and check that HIGH accuracy is available. When completing the terminal procedure, revert to the default value or enter the appropriate value on the MCDU PROG page.

If one of the following messages appears, while flying the procedure :

- "NAV ACCUR DOWNGRAD" (on MCDU and ND) on both sides, or
- "FMS1/FMS2 POS DIFF" (on MCDU), or
- "CHECK IRS 1(2)(3)/FM POSITION" (on MCDU), or
- "<u>NAV</u> FM/GPS POS DISAGREE" (on ECAM, if GPS installed)

Then :

R

R

R

- Inform the ATC of the loss of P-RNAV/RNP-1 capability, and follow ATC instructions.

<u>Note</u>: If the "NAV ACCUR DOWNGRAD" message is displayed on one side only, navigation may be continued using the other FMGC.

2CM ALL

RNP AR OPERATIONS

GENERAL

For RNP AR (SAAAR or equivalent) operations, the flight crews should refer to the specific procedures published by the airline.

The airline must obtain an operational approval and the flight crews must be qualified for this type of operations. To obtain this operational approval the airline should refer to the AFM and the associated Airworthiness Compliance Document (ACD). The approved RNP values are given in the AFM and the ACD.

The main procedure steps for RNP AR have been introduced in the SOP of FCOM Volume 3 and in the paragraph below. This does not relieve the airline from the need to provide the flight crews with tailored procedures when required.

REQUIRED EQUIPMENT

2 FMGC (2 FM required for RNAV approach)

2 MCDU

2 FD

1 AP, but 2 AP if RNP 0.3 or less is required in go around or departure

4 EFIS DU with 2 L/DEV and 2 V/DEV displays and RNP P/B

2 GPS (MMR) (2 GPS required for RNAV approach)

3 IRS (2 IRS for a departure)

EGPWS if obstacles

FCU with both channels

PROCEDURES

The availability of GPS PRIMARY for the estimated time of operation must be verified with an appropriate GPS prediction tool prior to dispatch.

Prior starting an RNP AR instrument procedures, check that :

- OAT and wind, as applicable, are within limits,
- The nearby navaids are deselected as necessary to avoid VORDME radio update if GPS PRIMARY is lost.
- The FMS lateral and vertical F-PLN extracted from the navigation database is in agreement with the instrument procedure chart.
- Two GPS sensors are in NAV on GPS MONITOR page
- The correct RNP value is displayed on MCDU with HIGH accuracy,
- GPS PRIMARY is available,

- Select the RNP P/B to ON, to get L/DEV indication on PFD.

For operations with RNP<0.3 NM, one AP must be engaged.

If obstacles, EGPWS TERRAIN display must be selected on both ND unless weather radar monitoring is required on one side.

Airspeed and configuration must be adapted for the radii of turns in the procedure.

Departure :

Before takeoff check that NAV is armed. When NAV is indicated active on FMA and at 100 ft select AP ON. Monitor lateral deviation using the L/DEV on PFD. Callout must be performed when L/DEV 1/2 RNP or 1 dot is reached. If L/DEV increases towards 1 RNP or 2 dots, take over manually using FD and the L/DEV indication to fly back on the intended flight plan and reengage AP as applicable.

Approach :

Verify altimeters after IAF but before the point where FINAL APP will activate and check that the difference between both indications is less than 75 ft.

The FINAL APP mode must activate before the FAF or any earlier defined waypoint indicated on the approach chart.

Monitor the L/DEV and V/DEV indications on PFD.

Callouts must be performed when

- V/DEV ±50 ft is reached or

- L/DEV reaches 1/2 RNP or 1 dot.

- Go around must be initiated if
- V/DEV -75 ft is reached or if
- L/DEV reaches 1 RNP or 2 dots.

Go Around :

With this standard of FMGC, GA TRACK mode will automatically activate at Go Around initiation. Therefore the PF must immediately reengage the NAV mode to remain on the FMS flight plan. This is essential if the go around is initiated during a turn.

Abnormal operations :

Detailed information is given in the ACD for the airline to develop contingency procedures adapted to each operation.

The flight crews must be trained to conduct departure or missed approach procedures with systems failures to ensure a safe extraction.

For approach, the following aply :

The RNP AR approach procedure should be continued in case of single failure of :

- GPS (MMR)
- FMGS
- EFIS DU
- MCDU
- AP (autopilot)

AIRBUS TRAINING A320	SPECIAL OPERATIONS	2.04.51	P 8
SINULATOR FLIGHT CREW OPERATING MANUAL	RNP	SEQ 100	REV 40

The RNP AR approach procedure must be discontinued in case of :

- Dual loss of GPS PRIMARY
- Dual NAV ACCUR DOWNGRAD
- FM/GPS POSITION DISAGREE
- FMS1/FMS2 POS DIFF
- Dual loss of FMGC or dual loss of FINAL APP mode
- Dual AP failure if the RNP<0.3
- Loss of EGPWS TERRAIN if obstacles or TERRAIN inconsistencies
- NAV ALT DISCREPANCY

Engine failure :

With this aircraft definition, if one engine fails in approach with NAV or FINAL APP mode, the AP must be disconnected, therefore :

- If RNP<0.3 a Go Around must be performed

- If RNP=0.3, the approach can be continued with FD

In case of engine failure during departure or a missed approach procedure, the flight crew must take into consideration the bank angle limitation when flying at a speed lower than the maneuvering speed. Turns in the procedure may require bank angle higher than 15°. Flying with one engine inoperative affects the aircraft lateral performance. The crew should be trained and instructed to disconnect AP should the aircraft deviate from the intended track.

This training must consider turning and straight legs as appropriate.

AIRBUS TRAINING A320	SPECIAL OPERATIONS	2.04.60	P 1
	OPERATION ON NARROW RUNWAYS	SEQ 001	REV 35

GENERAL

A standard runway is 45 meters wide. Operations on runways less than 45 meters wide require authorization from the Airworthiness Authorities.

AIRBUS TRAINING	0	FLIGHT PLANNING	2.05.00	P 1
	-	CONTENTS	SEQ 001	REV 21
05.00	CONTENTS			
05.10	– MINIMUM	rion	2	
05.15	CALCULATIO	N TABLES		
05.20		l AND MAXIMUM ALTITUDES ALTITUDE ON SHORT STAGE		
05.30	 – INTEGRATE – CLIMB COF – STEP CLIM 	CRUISE D CRUISE M.78 D CRUISE LR SPEED RECTION B CORRECTION CORRECTION	2 8 23 23	
05.40	 INTRODUCT CORRECTIC WEIGHT EXAMPLE . FLIGHT PLA 	RMINATION OF FLIGHT PLANNING FION	NDING 1 1 2	
05.50	alternate – Introduc ⁺ – USE of Ta	FION		
05.60	GROUND DIST	TANCE/AIR DISTANCE CONVERSION		
05.70	FUEL TANKER	ING		

FLIGHT PLANNING GENERAL

INTRODUCTION

Use this flight planning chapter when no precalculated flight plan is available. It contains the following general graphs and tables :

- Maximum and optimum cruise altitudes for M.78 and long range speed
- Optimum altitude on short stage
- Ground mile to air mile conversion for M.78 and long range speed

The integrated range method includes the following tables :

- Integrated cruise tables for M.78 for flight levels from FL290 to FL390,
- Integrated cruise tables for long range speed for flight levels from FL100 to FL390,
- Climb, step climb and descent correction tables.

These tables allow the flight planning to be done segment by segment.

Chapter 2.05.15 contains calculation tables and a comprehensive example to show how to use them.

The quick determination method is shown in chapter 2.05.40 for M.78 and long range speed.

MINIMUM RECOMMENDED FUEL REQUIREMENTS

The total fuel quantity required to fly a given sector is the sum of the following quantities:

TAXI FUEL

Quantity required for startup and taxi. Fuel calculation is based on a consumption of **11.5 kg/min** or **25 lb/min**

Average quantity (12 minutes) \rightarrow 140 kg or 300 lb

TRIP FUEL

Fuel required from departure to destination includes the following quantities:

- Takeoff and climb at selected speed.
- Cruise at selected speed.
- Descent from cruising level to 1500 feet above destination airport.
- Approach and landing. Fuel calculation is based on a consumption of 20 kg/min or 45 lb/min.
 Average quantity (6 minute IFR) → 120 kg or 270 lb

RESERVE FUEL

This quantity includes :

"En Route" reserve fuel (contingency fuel)

• According to national regulations and company policy (generally based on a percentage of trip fuel).

Alternate fuel

· Fuel required to fly from destination to alternate airport.

It includes go-around **100 kg** or **220 lb**, climb to cruising level, cruise at long range speed, descent and approach procedure.

80 kg or 180 lb for 4 minute VFR

<u>Holding Fuel</u>

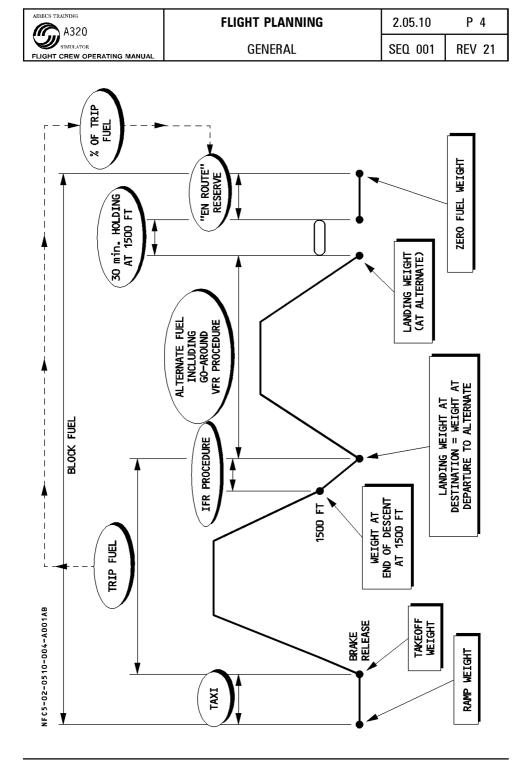
Calculation of holding fuel should take into account the altitude of the alternate and the landing weight at the alternate, using holding charts of chapter 3.05.25.

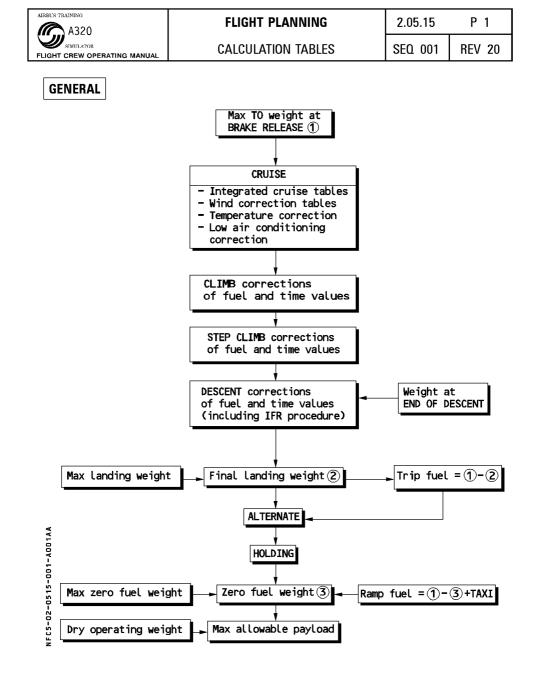
A conservative quantity corresponding to a 30 minute holding at 1500 feet above alternate <u>airport elevation at "green dot"</u> speed in the clean configuration is

1200 kg or 2700 lb .

<u>APU FUEL</u>

During ground operations, APU fuel consumption is about **130 kg/h** or **290 lb/h** (Packs ON, 90 kVA load on APU GEN).


AIRBUS TRAINING A320	FLIGHT PLANNING	2.05.10	P 3
SIMULATOR FLIGHT CREW OPERATING MANUAL	GENERAL	SEQ 001	REV 20


FLIGHT PLAN

When no precalculated flight plan is available, flight planning can be determined by using the tables given in this chapter.

Fuel policy will be the same as for precalculated flight plan.

The graph on the following page defines the different terms used in this chapter.

AIRBUS TRAINING A320	FLIGHT PLANNING	2.05.15	P 2
SIMULATOR FLIGHT CREW OPERATING MANUAL	CALCULATION TABLES	SEQ 020	REV 24

The following tables can be used for the flight planning.

The first table allows the planner to calculate fuel and time during cruise, with a possible step climb (see p 3).

The second table shows the fuel and time planning for the whole flight plan (see p 4).

At the end of the section an example shows how to use both tables for a given mission. Following tables have been calculated using databases for CFM 56–5–B /P SAC. If the engines fitted on the aircraft are not /P, the fuel consumption has to be increased by 3 %.

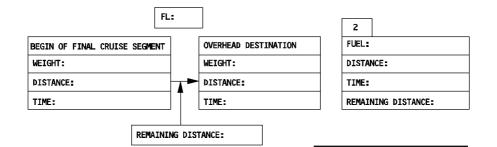
- <u>Note</u>: Differences in fuel consumption during step climb sections will be taken into account in the calculation table of page 4.
 - To find optimum aircraft weight to proceed to next flight level (4000 feet step) (Refer to 2.05.20 p 2).
 - Integrated cruise tables are established for ISA conditions only. Corrections due to differences from ISA temperature are included in the calculation table of page 4.
 - Overhead departure weight is assumed to be equal to weight at brake release.
 - Overhead destination weight must be entered in the calculation table of page 4.

FLIGHT PLANNING

CALCULATION TABLES

SEQ 001 RI

P 3 REV 20


CALCULATION TABLE

MACHNUMBER	
INITIAL FLIGHT LEVEL:	
GROUND DISTANCE:	
WIND ('-' HEAD/'+' TAIL):	
AIR DISTANCE:	

FLIGHT PROFILE

[FL:]	1]		
OVERHEAD DEPARTURE	7	START OF STEP CLIMB	FUEL:			
WEIGHT:	╞──►	WEIGHT:	DISTA	DISTANCE:		
DISTANCE:		DISTANCE:	TIME:			
TIME:		TIME:	REMAI	NING DISTANCE:		

NFC5-02-0515-003-A001AA

TOTAL VALUES	
WEIGHT OVERHEAD DEPARTURE:	
WEIGHT OVERHEAD DESTINATION:	
FUEL:	
TIME:	

AIRBUS TRAINING
A320
SIMULATOR
FLIGHT CREW OPERATING MANUAL

FLIGHT PLANNING CALCULATION TABLES

2.05.15

SEQ 001 REV 22

P 4

1	(1) Max TO Weight at BRAKE RELEASE ▼					•	
2	WEIGHT Overhead Destination					٠	
3	 Temperature Correction for CRUISE 	-				•	
4	+ Correction for Low Air Conditioning	+				•	
5	 CLIMB correction 	-				•	
6	+ TO Altitude correction	+				•	
7	 STEP CLIMB correction 	-				•	
8	= Corrected Weight Overhead Destination	=				•	
9	 + DESCENT correction (including 6 min IFR) 	+				•	
10	(2) Landing Weight at Destination	=				•	
11	– ALTERNATE Fuel	-				٠	
12	= ALTERNATE Landing Weight	=				•	
13	– Holding	-				٠	
14	= Weight at END OF HOLDING	=				٠	
15	TRIP FUEL (1) – (2)	11	///	///	///	//	11
16	– "En Route" Reserve	-				•	
17	(3) ZERO FUEL WEIGHT	=				•	
18	– OPERATING WEIGHT EMPTY	-				•	
19	= Max Allowable Payload	=				•	

	BLOCK FUEL CALCULATION						
20	Required Fuel (1) – (3)					٠	
21	+ Taxi	+				٠	
22	= Block Fuel	=				٠	

	FLIGHT TIME CALCULATION (H. MIN)						
23	Time from integrated Cruise Tables				٠		
24	+ CLIMB Correction	+			٠		
25	+ DESCENT Correction (including 6 min IFR)	+			٠		
26	= Flight Time	=			٠		

 Note
 : Line 3
 : temperature correction :

 0.015 (kg/°C/NM) × △ISA (°C) × air distance (NM) or

 0.033 (lb/°C/NM) × △ISA (°C) × air distance (NM)

 Line 6
 : TO altitude correction :

 0.5 (kg/1000 kg/1000 ft) × TOW (1000 kg) × airport elevation (1000 ft) or

 0.5 (lb/1000 lb/1000 ft) × TOW (1000 lb) × airport elevation (1000 ft)

 Line 10
 : Check that landing weight at destination is lower than maximum landing weight.

 Line 17
 : Check that the zero fuel weight is lower than maximum zero fuel weight.

 Line 22
 : Check that the block fuel value is lower than maximum tank capacity.

FLIGHT CREW OPERATING MANUAL
SIMULATOR
(A320
A
AIRBUS TRAINING

SEQ 180

CALCULATION TABLES

<u>Example</u>

<u>DATA</u>

- TO weight : 72000 kg
- Ground distance to destination : 2000 NM
- Wind : 50 kt (head wind)
- Selected initial FL : 350
- Mach number : M.78
- Temperature : ISA + 10

DETERMINATION OF CRUISE FUEL AND TIME

A : Enter the chosen flight Mach number, flight level, ground distance to be covered and forecast windspeed in the calculation table of page 7. Calculate the air distance (see 2.05.60 P 2) here : M.78, 50 kt head wind, 2000 NM ground distance → air distance : 2248 NM

CRUISE TABLE FL350

- B : Read from integrated cruise table (M.78, FL350) the values for time and distance for a weight of 72000 kg (see 2.05.30 P 5) : \rightarrow distance : 5599 NM \rightarrow time : 747 min
- R C : Read from 2.05.20 P 1 the value for the optimum aircraft weight to proceed to R FL390 \rightarrow 62000 kg
- D : Enter integrated cruise table (M.78, FL350) and read the values for a weight of 62000 kg (begin of first step climb)
- R \rightarrow distance : 3759 NM \rightarrow time : 502 min
- E : Calculate the values for the first cruise segment :
- R
 Fuel
 : 72000 62000 = 10000 kg

 R
 Distance
 : 5599 3759 = 1840 NM
- R Time : 747 502 = 245 min
- R Remaining distance : 2248 1840 = 408 NM

AIR	REUS TRAIN	11NG \320	FLIGHT PLANNING	2.05.15	P 6
FL	U sm	NJZU RILATOR REW OPERATING MANUAL	CALCULATION TABLES	SEQ 180	REV 31
R R R	CRL F G H	distance for th → distance : 4 : Subtract rema : Interpolate in i corresponding → weight : 60	egrated cruise table (M.78, FL390) the value weight of 62000 kg (2.05.30 P 7) 4050 NM \rightarrow time : 543 min ining distance : 4050 - 408 = 3642 NM ntegrated cruise table (M.78, FL390) the v to the distance of 3642 NM 0000 kg \rightarrow time : 489 min es for the second cruise segment :		
R R R		Fuel Distance Time	: 62000 - 60000 = 2000 kg : 4050 - 3642 = 408 NM : 543 - 489 = 54 min		
	J	: Fill in the final	at remaining air distance equals zero. table with weight overhead departure (72 nation (60000 kg).	2000 kg) and	weight
R	K	: Calculate total Fuel Time		min	

OVERHEAD D

WEIGHT:

TIME:

DISTANCE:

FLIGHT PLANNING

2.05.15

Ρ7

CALCULATION TABLES

CLIMB

62000 Kg 3759 NM

502 Min

SEQ 180 REV 31

R

CALCULATION TABLE

MACHNUMBER	0.78
INITIAL FLIGHT LEVEL:	350
GROUND DISTANCE:	2000 NM
WIND ('-' HEAD/'+' TAIL):	-50 KT
AIR DISTANCE:	2248 NM

FLIGHT PROFILE

	FL: 350	
EPARTURE		START OF STEP
72000 Kg	a	WEIGHT:

5599 NM

747 Min

1				
FUEL:			10000) Kg
DISTA	NCE:		1840) nm
TIME:			245	Min
REMAI	NING	DISTANCE	: 408	8 NM

	FL	: 390		
BEGIN OF FINAL CF	RUISE SEGMENT		OVERHEAD DES	TINATION
WEIGHT:	62000 Kg		WEIGHT:	60000 Kg
DISTANCE:	4050 NM		DISTANCE:	3642 NM
TIME:	543 Min	T	TIME:	489 Min

REMAINING DISTANCE: 408 NM

DISTANCE:

TIME:

2	
FUEL:	2000 Kg
DISTANCE	: 408 NM
TIME:	54 Min
REMAININ	IG DISTANCE : O NM

NFC5-02-0515-007-A180AA

72000 Kg
60000 Kg
12000 Kg
299 Min

SIMULATOR	
(C) ^{A320}	
AIRBUS TRAINING	

0	140	REV	31
u	140		51

DATA

- TO weight : 72000 kg
- Ground distance to destination : 2000 NM
- Wind : 50 kt (headwind)
- Selected first flight level : FL350
- M.78
- Temperature : ISA + 10 along the whole flight profile
- Airport elevation : 1500 ft
- Normal air conditioning

STEPS :

- 1 : Fill in Max TO weight \rightarrow 72000 kg
- 2 : Enter the integrated cruise table corresponding to the chosen FL with TO weight at brake release point and calculate weight overhead destination. (See 2.05.15 P 7). Fill in \rightarrow 60000 kg
- 3 : Apply temperature correction for given air distance : 2248 NM \times 10°C \times 0.015 kg/°C/NM = 337 kg (enter 400 kg into table)
- : Correction for low air conditioning \rightarrow here = 04
- : Subtract climb correction for chosen FL (see 2.05.30 P 23) \rightarrow 1000 kg 5
- : Add TO altitude correction $0.5 \times 72 \times 1.5 = 54$ kg (enter 0.1 into table) 6
- 7 : Subtract value for step climb correction : 50 kg (enter 0.1 into table)
- 8 : Calculate corrected weight overhead destination \rightarrow 58600 kg
- : Enter weight overhead destination and find descent correction 9 (including 6min IFR) (see 2.05.30 P 24) \rightarrow 200 kg
- : Calculate landing weight at destination \rightarrow 58800 kg 10
- : Subtract alternate fuel, e.g. : 100 NM at FL100 R 11
- R (see 2.05.50 P 2) \rightarrow 986 kg R
 - Landing weight at alternate \rightarrow 58800 986 = 57814 kg
 - Correction due to deviation from reference landing weight at alternate (see
 - $2.05.50 \text{ p} (2) \rightarrow 6 \times (57.8 55) = 16.8 \text{ kg}$
 - Corrected alternate fuel \rightarrow 1003 kg
- : Calculate alternate landing weight \rightarrow 57800 kg 12
- : Subtract holding fuel (Refer to 3.05.25) \rightarrow 1094 kg 13 R
- : Calculate weight at end of holding \rightarrow 56700 kg R 14
- : Calculate trip fuel \rightarrow 13200 kg 15
- : Subtract "En Route" reserve (standard amount is 5 % of trip fuel) \rightarrow 660 kg 16
- : Calculate zero fuel weight \rightarrow 56000 kg R 17
- 18-19 : Subtract dry operating weight to obtain maximum allowable payload.
- 20-22 : Calculate ramp fue (see 2.05.10 P 2 for taxi fuel). R
- 23-26 : Calculate flight time (see 2.05.15 P 7, 2.05.30 P 23, 2.05.30 P 24). R

R R

R

FLIGHT CREW OPERATING MANU	
SIMULATOR	
(C) A320	
A200	
AIRBUS TRAINING	

FLIGHT PLANNING CALCULATION TABLES

2.05.15

SEQ 140

P 9 REV 31

R

1	(1) Max TO Weight at BRAKE RELEASE ▼			7	2	•	0
2	WEIGHT Overhead Destination			6	0	•	0
3	 Temperature Correction for CRUISE 	-			0	•	4
4	+ Correction for Low Air Conditioning	+				٠	0
5	 – CLIMB correction 	-			1	•	0
6	+ TO Altitude correction	+			0	•	1
7	 STEP CLIMB correction 	-			0	•	1
8	= Corrected Weight Overhead Destination	=		5	8	•	6
9	+ DESCENT correction (including 6 min IFR)	+			0	•	2
10	(2) Landing Weight at Destination	=		5	8	•	8
11	– ALTERNATE Fuel				1	•	0
12	= ALTERNATE Landing Weight	=		5	7	•	8
13	– Holding	-			1	•	1
14	= Weight at END OF HOLDING	=		5	6	•	7
15	TRIP FUEL (1) – (2) 1 3 • 2	11	///	///	///	//	//
16	– "En Route" Reserve	-			0	•	7
17	(3) ZERO FUEL WEIGHT	=		5	6	•	0
18	– OPERATING WEIGHT EMPTY	_		4	1	•	3
19	= Max Allowable Payload	=		1	4	•	7

	BLOCK FUEL CALCULATION						
20	Required Fuel (1) – (3)			1	6	٠	1
21	+ Taxi	+			0	٠	2
22	= Block Fuel	=		1	6	٠	3

R

	FLIGHT TIME CALCULATION (H. MIN)							
23	Time from integrated Cruise Tables	•		4	•	9	9	
24	+ CLIMB Correction	+		0	٠	0	5	
25	+ DESCENT Correction (including 6 min IFR)	+		0	٠	1	0	
26	= Flight Time	=		5	٠	1	4	

Note : Line 3 : temperature correction :

 $0.015(kg/^{\circ}C/NM) \times \triangle ISA (^{\circ}C) \times air distance (NM)$

- Line 6 : TO altitude correction : 0.5 (kg/1000 kg/1000 ft) × TOW (1000 kg) × airport elevation (1000 ft).
- *Line 10 : Check that landing weight at destination is lower than maximum landing weight.*
- Line 17 : Check that the zero fuel weight is lower than maximum zero fuel weight.
- Line 22 : Check that the block fuel value is lower than maximum tank capacity.

CRUISE LEVEL

OPTIMUM AND MAXIMUM ALTITUDES

DEFINITIONS

- \cdot Optimum altitude : The altitude at which the airplane covers the maximum distance per kilogram (pound) of fuel (best specific range). It depends on the actual weight and deviation from ISA.
- \cdot Maximum altitude is defined as the lower of :
 - maximum altitude at maximum cruise thrust in level flight and
 - maximum altitude at maximum climb thrust with 300 feet/minute vertical speed.

Note : Definition of the maximum altitude in the FMGC is different (Refer to FCOM 4).

CRUISE LEVEL CHARTS

These charts have been established for a center of gravity at 33 % MAC. Maximum and optimum altitudes are given for different temperatures at long range speed and M.78.

Note : The n = 1.3 g (1.4 g) curve indicates the buffet margin.

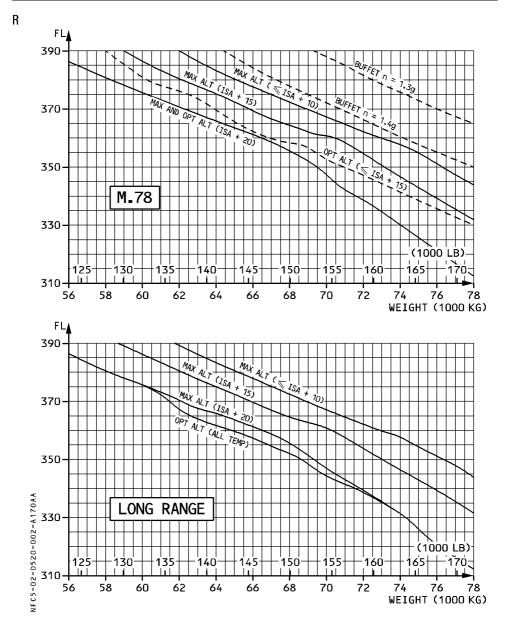
R OPTIMUM WEIGHT FOR 4000 FEET STEP CLIMB

R

STEP	WEIGHT (1000 kg/1000 lb)								
CLIMB	\leq ISA + 10 ISA + 15 ISA + 20								
FROM/TO	LR	M.78	LR	M.78	LR	M.78			
310/350	76/167	76/167	73/160	73/160	69/152	69/152			
330/370	69/152	69/152	66/145	66/145	62/136	62/136			
350/390	62/136	62/136	59/130	59/130	55/121	55/121			

BLEED CORRECTIONS

	ENGINE ANTI ICE	TOTAL ANTI ICE
ISA	Max Alt. : – 200 ft Opt Alt. : – 200 ft	Max Alt. : – 500 ft Opt Alt. : – 300 ft
ISA + 10	Max Alt. : – 1500 ft Opt Alt. : – 400 ft	Max Alt. : – 4200 ft Opt Alt. : – 3100 ft
ISA + 15	Max Alt. : – 3500 ft Opt Alt. : – 3500 ft	Max. Alt. : – 4800 ft Opt Alt. : – 4300 ft
ISA + 20	Max Alt. : – 5300 ft Opt Alt. : – 3800 ft	Max Alt. : – 6500 ft Opt Alt. : – 6200 ft



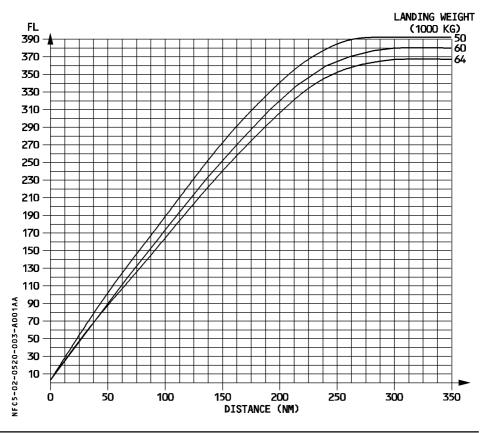
FLIGHT PLANNING

2.05.20 P 2

CRUISE LEVEL

SEQ 170 REV 34

AIRBUS TRAINING A320	FLIGHT PLANNING	2.05.20	P 3
AS2U SIMULATOR FLIGHT CREW OPERATING MANUAL	CRUISE LEVEL	SEQ 001	REV 22


OPTIMUM ALTITUDE ON SHORT STAGE

According to the air distance (from brake release point to landing), the cruise flight level is limited by the distance required to perform climb and descent. The graph determines the optimum altitude.

- It includes the following profiles:
- Takeoff
- Climb: 250kt/300kt/M.78
- Long range cruise (during at least 5 minutes)
- Descent: M.78/300kt/250kt
- Approach and landing

and it is established for:

- ISA
- CG = 33 %
- Normal air conditioning
- Anti ice OFF

INTEGRATED CRUISE

GENERAL

Integrated cruise tables allow the planner to calculate the cruise fuel consumption and the cruise time required to cover a given air distance.

In the tables, the difference between two gross weights represents the fuel consumption. The difference between the corresponding distances and times respectively represents the cruise distance covered and the cruise time for this fuel consumption.

Integrated cruise tables are established for M.78 at fixed levels from FL290 to FL390 and for long range speed at fixed levels from FL100 to FL390.

Corrections are given on separate tables to allow for step climbs and to take into account the climb and the descent phases.

"

R

FLIGHT PLANNING

2.05.30

SEQ 180

P 2 **REV 23**

A320 SIMULATOR FLIGHT CREW OPERATING MANUAL

INTEGRATED CRUISE

				NTEGR/	ATED C	RUISE				
MAX. CRU	ISE THRU	JST LIMI	ts	IS	A	DIST	ANCE		_	
NORMAL AIR CONDITIONING		CG=33.0%		(NM)		M.78		FL29(
ANTI-ICINO	G OFF			TAS=	462KT	TIME	(MIN)		10	LZA
WEIGHT	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8
(1000KG)	U	.2	.4	.0	.0	1.0	1.2	1.4	1.0	1.0
44	0 0	36 5	72 9	108 14	144 19	180 23	216 28	252 33	288 37	32
46	359	395	431	467	502	538	574	610	645	68
	47 717	51 752	56 788	61 823	65 859	<u>70</u> 894	75 930	79 965	84 1001	8 103
48	93	98	102	107	112	116	121	125	130	13
50	1072 139	1107 144	1142 148	1178 153	1213 158	1248 162	1283 167	1319 171	1354 176	138 18
	1424	1459	1494	1529	1564	1599	1634	1669	1704	173
52	185	190	194	199	203	208	212	217	221	22
54	1774 231	1809 235	1844 240	1878 244	1913 249	1948 253	1983 258	2017 262	2052 267	208
56	2121	2156	2190	2225	2259	2294	2328	2363	2397	243
	276 2466	280 2500	285 2534	289 2569	294 2603	<u>298</u> 2637	303 2671	307 2705	<u>312</u> 2740	31 277
58	320	325	329	334	338	343	347	352	356	36
60	2808	2842	2876	2910	2944	2978	3011	3045	3079	311
	365 3147	369 3180	<u> </u>	378 3248	383 3281	<u>387</u> 3315	391 3348	396 3382	400 3415	40
62	409	413	418	422	426	431	435	440	444	44
64	3482 453	3516 457	3549 461	3582 466	3616 470	3649 474	3682 479	3715 483	3749 487	378 49
	3815	3848	3881	3914	3947	3980	4013	4046	4078	49
66	496	500	504	509	513	517	522	526	530	53
68	4144 539	4177 543	4209 547	4242 551	4275 556	4307 560	4340 564	4372 568	4405 573	443 57
	4470	4502	4535	4567	4599	4632	4664	4696	4728	476
70	581 4792	585 4824	589 4856	594 4888	598 4920	602 4952	606 4984	610 5016	614 5047	61 507
72	4792	4824 627	4856	4888 635	4920 639	495Z 644	4984 648	5016 652	5047 656	66
74	5111	5143	5174	5206	5237	5269	5300	5332	5363	539
	664 5426	668 5457	672 5488	677 5519	681 5551	685 5582	689 5613	693 5644	697 5675	70 570
76	5426 705	5457 709	713	717	721	725	729	733	738	570
	CONDITION L = -0.5 %			ENGINE AN				TOTAL AN △FUEL =		

11.0 -08F0A320-214 CFM56-5B4/P SA22100000C5KG330 0 018590 0 0 1 1.0 .0 .00 02901 . 780 .000 .000 0 FC0M-N0-02-05-30-002-180

R

FLIGHT PLANNING

2.05.30

P 3

FLIGHT CREW OPERATING MANUAL

SIMULATOR

INTEGRATED CRUISE

SEQ 180

0 | REV 23

			l	NTEGR/	ATED CI	RUISE				
NORMAL	MAX. CRUISE THRUST LIMITS NORMAL AIR CONDITIONING ANTI-ICING OFF		ISA CG=33.0% TAS= 458KT		(N	DISTANCE (NM) TIME (MIN)		M.78		
WEIGHT (1000KG)	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8
44	0	39	77	116	155	193	232	270	309	347
	0	5	10	15	20	25	30	35	40	46
46	386	424	462	501	539	577	615	654	692	730
	51	56	61	66	71	76	81	86	91	96
48	768	806	844	882	920	958	996	1034	1072	1110
	101	106	111	116	121	126	131	136	140	145
50	1147	1185	1223	1260	1298	1336	1373	1411	1449	1486
	150	155	160	165	170	175	180	185	190	195
52	1524	1561	1598	1636	1673	1711	1748	1785	1822	1859
	200	205	210	214	219	224	229	234	239	244
54	1897	1934	1971	2008	2045	2082	2119	2156	2193	2230
	249	254	258	263	268	273	278	283	287	292
56	2266	2303	2340	2377	2413	2450	2486	2523	2559	2596
	297	302	307	312	316	321	326	331	336	340
58	2632	2669	2705	2741	2778	2814	2850	2886	2922	2958
	345	350	355	359	364	369	374	378	383	388
60	2995	3031	3066	3102	3138	3174	3210	3246	3281	3317
	393	397	402	407	411	416	421	426	430	435
62	3353	3388	3424	3460	3495	3531	3566	3601	3637	3672
	440	444	449	454	458	463	467	472	477	481
64	3707	3742	3778	3813	3848	3883	3918	3953	3988	4023
	486	491	495	500	504	509	514	518	523	527
66	4058	4092	4127	4162	4196	4231	4265	4300	4334	4369
	532	536	541	546	550	555	559	564	568	573
68	4403 577	4438 582	4472 586	4506 591	4540 595	4574 600	4608	4642 609	4677 613	4711 618
70	4745	4778	4812	4846	4880	4913	4947	4980	5014	5048
	622	626	631	635	640	644	649	653	657	662
	5081	5114	5148	5181	5214	5248	5281	5314	5347	5380
72	666 5413	670 5445	5148 675 5478	679 5511	5214 684 5544	5248 688 5576	5281 692 5609	5314 697 5641	5347 701 5674	5380 705 5706
74	5413	5445	5478	5511	5544	5576	5609	5041	5674	5706
	710	714	718	722	727	731	735	740	744	748
	5739	5771	5803	5836	5868	5900	5932	5964	5996	6028
<u>76</u>	752	757	761	765	769	773	5932 778	782	786	6028 790
∆FUE	CONDITIO $L = -0.5^{\circ}$	%		engine an Afuel =	= + 2 %	00101 700		TOTAL AN △FUEL =	+ 4.5 %	

11.0 -08F0A320-214 CFM56-5B4/P SA22100000C5KG330 0 018590 0 0 1 1.0 .0 .00 03101 . 780 .000 .000 0 FCOM-N0-02-05-30-003-180

A320

FLIGHT CREW OPERATING MANUAL

FLIGHT PLANNING

2.05.30

SEQ 180 REV 23

P 4

E	h	
ľ	٦	

			I	NTEGR/	ATED CH	RUISE				
MAX. CRU	USE THRU	UST LIMI	TS	IS	A	DIST	ANCE			
NORMAL	NORMAL AIR CONDITIONING			CG = 3	CG=33.0%		(NM)		70	
ANTI-ICINO			-	TAS=		TIME	'	IVI.	78	FL330
WEIGHT				143-	4341(1		(IVIIIV)			
(1000KG)	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8
(1000KG)	0			104	105	202	040	000	000	071
44	0 0	41 5	83 11	124 16	165 22	207 27	248 33	289 38	330 44	371 49
	412	453	494	535	576	617	658	698	739	780
46	55	60	65	71	76	82	87	92	98	103
	821	861	902	942	983	1024	1064	1104	1145	1185
48	109	114	119	125	130	135	141	146	151	157
50	1225	1266	1306	1346	1386	1426	1466	1506	1546	1586
	162	167	173	178	183	189	194	199	204	210
52	1626 215	1666 220	1705 226	1745 231	1785 236	1824 241	1864 247	1903 252	1943 257	1982 262
	2022	2061	220	231	230	2218	2257	232	2335	202
54	267	273	278	283	288	293	299	304	309	314
	2413	2452	2491	2530	2569	2607	2646	2685	2723	2762
56	319	324	329	335	340	345	350	355	360	365
	2800	2839	2877	2915	2953	2992	3030	3068	3106	3144
58	370	375	380	386	391	396	401	406	411	416
60	3182	3220	3258	3295	3333	3371	3409	3446	3484	3521
	421	426	431	436	441	446	451	456	461	466
62	3559 471	3596 476	3633 481	3671 485	3708 490	3745 495	3782 500	3819 505	3856 510	3893 515
	3930	3967	4004	4040	4077	4114	4150	4187	4223	4259
64	520	525	529	534	539	544	549	554	559	563
	4296	4332	4368	4404	4440	4476	4512	4548	4584	4620
66	568	573	578	582	587	592	597	602	606	611
68	4656	4691	4727	4762	4798	4833	4868	4903	4939	4974
	616	620	625	630	635	639	644	649	653	658
70	5009	5044	5079	5114	5148	5183	5218	5252	5287	5321
	662 5356	667 5390	<u>672</u> 5424	676 5458	681 5492	686 5527	690 5560	695 5594	699 5628	704 5662
72	708	713	717	722	726	731	735	740	744	749
	5696	5729	5763	5796	5830	5863	5896	5929	5962	5995
74	753	758	762	767	771	775	780	784	789	793
76	6028	6061	6094	6126	6159	6192	6224	6256	6289	6321
	797	802	806	810	815	819	823	827	832	836
					ENGINE ANTI ICE ON			TOTAL AN		
∆FUE	L = -0.5			△FUEL =			000 000 0	$\triangle FUEL =$	+ 4.5 %	

11.0 -08F0A320-214 CFM56-5B4/P SA22100000C5KG330 0 018590 0 0 1 1.0 .0 .00 03301 . 780 .000 .000 0 FC0M-N0-02-05-30-004-180

AIRBUS TRAINING A320 SIMULATOR

FLIGHT PLANNING

2.05.30

SEQ 180 REV 26

Ρ5

INTEGRATED CRUISE

				NTEGR/	ATED CI	RUISE				
MAX. CRU	ISE THRU	JST LIMI	TS	IS	A	DISTA	ANCE			
NORMAL AIR CONDITIONING			CG=33.0%		(NI	M)	RЛ	78		
ANTI-ICINO	G OFF			TAS=	450KT	TIME	'	IVI.	10	FL350
WEIGHT				1710	looki		,,			
(1000KG)	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8
44	0	44	88	132	177	221	265	308	352	396
	0 440	6 484	12 527	18 571	24 615	29 658	35 702	41 745	47 789	53 832
46	440 59	484	527 70	571	82	658 88	702 94	745 99	105	111
	875	918	962	1005	1048	1091	1134	1177	1219	1262
48	117	123	128	134	140	146	151	157	163	168
50	1305 174	1348 180	1390 186	1433 191	1475 197	1518 203	1560 208	1602 214	1645 219	1687 225
	1729	1771	1813	1855	1897	1939	1981	2023	2065	2106
52	231	236	242	248	253	259	264	270	276	281
54	2148 287	2189 292	2231 298	2272 303	2314 309	2355 314	2396 320	2437 325	2478 331	2519 336
	2560	2601	290	2683	2724	2764	2805	2845	2886	2926
56	342	347	353	358	363	369	374	380	385	390
58	2967	3007	3047	3087	3127	3167	3207	3247	3287	3326
	396 3366	401 3406	407 3445	<u>412</u> 3484	417 3524	423 3563	428 3602	433 3641	439 3680	444 3719
60	449	454	460	465	470	476	481	486	491	496
62	3759	3797	3836	3875	3913	3952	3990	4029	4067	4105
	502 4143	507 4181	512	517 4257	522 4295	527 4333	532 4370	538	543	548 4483
64	553	558	4219 563	4257 568	4295	4333	4370	4408 588	4445 593	4483
	4520	4557	4595	4632	4669	4706	4742	4779	4816	4852
66	603	608	613	618	623	628	633	638	643	648
68	4889 652	4925 657	4961 662	4998 667	5034 672	5070 677	5106 681	5141 686	5177 691	5213 696
	5248	5284	5319	5354	5389	5425	5459	5494	5529	5564
70	700	705	710	715	719	724	729	733	738	742
72	5599	5633	5667	5702	5736	5770	5804	5838	5872	5906
	747 5940	752 5973	756 6006	761 6040	765 6073	770 6107	775 6139	779 6172	784 6205	788 6238
74	793	797	802	806	810	815	819	824	828	832
76	6271	6304	6336	6369	6401	6434	6466	6498	6530	6562
	837 Conditio	841	846	850 Engine An	854	859	863	867 Total An	871	876
	L = -0.5 %			≤NGINE AF				△FUEL =		

R

FLIGHT PLANNING

2.05.30

SEQ 180 **REV 26**

P 6

A320	
SIMULATOR	
FLIGHT CREW OPERATING	MANUAL

INTEG

G	RA	TED	CRUISE	

				NTEGR/	ATED CH	RUISE				
MAX. CRUISE THRUST LIMITS NORMAL AIR CONDITIONING ANTI-ICING OFF		ISA CG=33.0% TAS= 447KT		DISTANCE (NM) TIME (MIN)		M.78	FL370			
WEIGHT (1000KG)	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8
44	0 0	47 6	94 13	141 19	188 25	234 31	281 38	327 44	374 50	421 56
46	467 63	513 69	560 75	606 81	652 87	698 94	744 100	790 106	836 112	882 118
48	928 124	973 131	1019 137	1065 143	1110 149	1156 155	1201 161	1246 167	1291 173	1336 179
50	1382 185	1426 191	1471 197	1516 203	1561 209	1606 215	1650 221	1694 227	1739 233	1783 239
52	1828 245	1872 251	1916 257	1960 263	2004 269	2048 275	2092 281	2135 286	2179 292	2223
54	2266 304	2309 310	2353 316	2396 321	2439 327	2482 333	2525 339	2568 344	2611 350	2653 356
56	2696 362	2739 367	2781 373	2823 379	2866 384	2908 390	2950 396	2992 401	3034 407	3076 412
58	3118 418	3159 424	3200 429	3242 435	3283 440	3325 446	3366 451	3407 457	3448 462	3489 468
60	3530 473	3570 479	3610 484	3651 490	3691 495	3732 500	3772 506	3811 511	3851 517	3891 522
62	3931 527	3971 532	4010 538	4049 543	4089 548	4128 554	4167 559	4205 564	4244 569	4283
64	4322 580	4360 585	4398 590	4436 595	4475 600	4513 605	4551 610	4588 615	4626 620	4664
66	4701 631	4739 635	4776 640	4813 645	4850 650	4887 655	4924 660	4960 665	4997 670	5033 675
68	5070 680	5106 685	5142 690	5177 694	5213 699	5249 704	5285 709	5321 714	5356 718	5392 723
70	5428 728	5463 733	5498 737	5532 742	5567 747	5602 751	5637 756	5672 761		
72										
74										
76	CONDITIO	NING		ENGINE AN				TOTAL AN		
	L = -0.5 %			∠FUEL =				△FUEL =		

R

FLIGHT PLANNING

2.05.30

P 7

FLIGHT CREW OPERATING MANUAL

INTEGRATED CRUISE

SEQ 180 F

0 REV 26

			I	NTEGR	ATED CI	RUISE				
NORMAL	MAX. CRUISE THRUST LIMITS NORMAL AIR CONDITIONING ANTI-ICING OFF		ISA CG=33.0% TAS= 447KT		DISTANCE (NM) TIME (MIN)		M.78	FL390		
WEIGHT (1000KG)	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8
44	0 0 493	49 7 541	99 13 590	148 20 638	198 27 687	247 33 735	296 40 784	345 46 832	394 53 880	444 59 928
46	66 976	73 1024	79 1071	86 1119	92 1167	99 1214	105 1262	112 1309	118 1356	124 1403
<u>48</u> 50	131 1450 194	137 1497 201	144 1544 207	150 1590 213	156 1637 220	163 1683 226	169 1730 232	176 1776 238	182 1822 244	188 1868 251
52	1914 257	1960 263	2005 269	2051 275	2096 281	2142 287	2187 293	2232 299	2277 305	2322 311
54	2367 317 2808	2411 323 2851	2456 329 2894	2500 335 2937	2545 341 2980	2589 347 3023	2633 353 3066	2676 359 3108	2720 365 3150	2764 371 3193
<u>56</u> 58	377 3235 434	382 3277 440	388 3319 445	394 3361 451	400 3402 456	405 3444 462	411 3485 467	417 3526 473	423 3568 478	428 3609 484
60	3650 489	3690 495	3731 500	3771 506	3812 511	3852 517	3892 522	3931 527	3971 533	4010 538
62	4050 543	4090 548	4129 554	4169 559	4207 564	4245 569	4284 575	4323 580	4362 585	4401 590
64 66										
68										
70										
<u>72</u> 74										
76										
	LOW AIR CONDITIONING $\triangle FUEL = -0.5 \%$			ENGINE ANTI ICE ON △FUEL = + 2 %				TOTAL AN △FUEL =		

R

A320

FLIGHT PLANNING

2.05.30

SEQ 180

REV 23

P 8

FLIGHT	CREW	OPERATING	MANUA

INTEGRATED CRUISE

				INTE	GRATE	D CRUI	SE				
MAX. CRU	IISE THR	rust lin	/ITS	IS	Α	DIST	ANCE				
NORMAL	AIR CON	DITION	NG	CG = 3	33.0%	(N	M)		ID		
ANTI-ICINO						TIME			LR	FL1	00
WEIGHT		-	-								TAS
(1000KG)	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	(KT)
44	0	29	57	86	115	143	172	200	229	257	268
44	0	6	13	19	26	32	38	45	51	57	
46	285	314	342	370	398	426	454	482	510	538	271
	64 566	70 593	76 621	82 649	89 676	95 704	101 731	107 759	113 786	119 813	275
48	125	131	137	049 143	149	155	161	167	173	179	270
	841	868	895	922	949	976	1003	1030	1057	1084	280
50	185	191	196	202	208	214	219	225	231	236	200
	1111	1137	1164	1190	1217	1244	1270	1296	1323	1349	287
52	242	247	253	258	264	269	274	280	285	290	207
	1376	1402	1428	1454	1480	1506	1532	1558	1584	1610	308
54	295	300	305	310	315	320	325	330	335	340	
	1636	1662	1687	1713	1739	1765	1790	1816	1841	1867	320
56	345	350	355	359	364	369	374	378	383	388	
EO	1893	1918	1943	1969	1994	2020	2045	2070	2095	2121	327
58	392	397	402	406	411	416	420	425	429	434	
60	2146	2171	2196	2221	2247	2272	2297	2322	2347	2372	333
00	439	443	448	452	457	461	466	470	474	479	000
62	2397	2421	2446	2471	2496	2521	2546	2570	2595	2620	338
	483 2644	488 2669	492 2694	497 2718	501 2743	505 2767	510 2792	514 2816	518 2841	523 2865	343
64	527	531	536	540	544	548	553	557	561	2605	343
	2889	2914	2938	2962	2987	3011	3035	3059	3084	3108	348
66	570	574	578	582	586	590	595	599	603	607	040
	3132	3156	3180	3204	3228	3253	3276	3300	3324	3348	351
68	611	615	619	624	628	632	636	640	644	648	
	3372	3396	3420	3444	3468	3492	3515	3539	3563	3587	354
70	652	656	660	664	668	672	676	680	684	688	
72	3610	3634	3658	3681	3705	3729	3752	3776	3799	3823	355
12	692	696	700	704	708	712	716	720	724	728	
74	3846	3870	3893	3916	3940	3963	3987	4010	4033	4056	356
/4	732	736	740	744	748	752	756	760	764	768	357
76	4080 771	4103 775	4126 779	4149 783	4173 787	4196 791	4219 795	4242 799	4265 803	4288 806	35/
					NGINE AN				TOTAL AN		
	FUEL = -		-	-	$\triangle FUEL =$			△FUEL =			

R

FLIGHT PLANNING

2.05.30

SEQ 180

P 9 REV 23

W	SIMULAT	FOR	
FLIGHT	CREW	OPERATING	MANUAL

INTEGRATED CRUISE

				INTE	GRATE	D CRUI	SE				
MAX. CRU	ISE THF	rust lin	/IITS	IS	Α	DIST/	ANCE				
NORMAL A	AIR CON	IDITIONI	NG	CG = 3	33.0%	(NM)			ID		
ANTI-ICINO						TIME			LR	FL1	 20
WEIGHT	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	TAS
(1000KG)	Ŭ			10	.0			•••			(KT)
44	0 0	30 7	60 13	90 20	119 26	149 33	179 39	208 46	238 52	267 58	272
46	297 65	326 71	356 78	385 84	414 90	443 96	472 103	501 109	530 115	559 121	277
48	588	617	645	674	703	731	760	788	817	845	284
	127 873	133 902	139 930	145 958	151 986	157 1014	162 1042	168 1070	174 1098	179 1126	305
50	185 1153	190 1181	196 1209	201 1236	<u>207</u> 1264	212 1292	218 1319	<u>223</u> 1347	228 1374	234 1402	316
52	239 1429	244 1456	249 1484	255 1511	260 1538	265 1566	270 1593	275 1620	280 1647	286 1674	323
54	291	296 1728	301 1755	<u>306</u> 1782	311	316	321	326	331	336 1943	328
56	341	346	351	356	360	365	370	375	380	385	
58	1970 389	1996 394	2023 399	2050 404	2076 408	2103 413	2129 418	2156 422	2182 427	2209 432	335
60	2235 437	2261 441	2288 446	2314 450	2340 455	2366 460	2393 464	2419 469	2445 473	2471 478	341
62	2497 482	2523 487	2549 491	2575 496	2601 500	2627 505	2653 509	2679 514	2705 518	2730 522	347
64	2756	2782	2808	2833	2859	2885	2910	2936	2962	2987	350
	527 3013	531 3038	536 3064	540 3089	544 3114	549 3140	553 3165	558 3191	562 3216	566 3241	352
66	571 3267	575 3292	579 3317	584 3342	588 3367	592 3393	597 3418	601 3443	605 3468	609 3493	353
68	614 3518	618 3543	622 3568	627 3593	631 3618	635 3643	639 3667	644 3692	648 3717	652 3742	354
70	656	661	665	669	673	678	682	686	690	694	
72	3767 699	3791 703	3816 707	3841 711	3866 715	3890 719	3915 724	3939 728	3964 732	3989 736	354
74	4013 740	4038 744	4062 749	4087 753	4111 757	4135 761	4160 765	4184 769	4208 773	4233 777	355
76	4257 781	4281 785	4305 789	4329 794	4354 798	4378 802	4402 806	4426 810	4450 814	4474 818	357
LOW	AIR CON	DITIONING		ENGINE ANTI ICE ON				TOTAL ANTI ICE ON			
∆ 1.008E0&320-3	FUEL = -				$\triangle FUEL =$				∆FUEL =		

11.0 -08F0A320-214 CFM56-5B4/P SA22200000C5KG330 0 018590 0 0 1 1.0 .0 .00 01201 . 990 .000 .000 0 FC0M-N0-02-05-30-009-180

R

A320

FLIGHT PLANNING

2.05.30

SEQ 180

P 10 REV 23

FLIGHT	CREW	OPERATING	MANUA

INTEGRATED CRUISE

				INTE	GRATEI	D CRUI	SE				
MAX. CRU	IISE THF	rust lin	/ITS	IS	A	DIST	ANCE				
NORMAL /	AIR CON	IDITIONI	NG	CG = 3	33.0%	(NM)			ID		
ANTI-ICINO	G OFF					TIME			LR	FL1	 50
WEIGHT	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	
(1000KG)			20	05	100	450	100	001	050	000	(KT)
44	0	32 6	63 13	95 19	126 25	158 31	189 37	221 44	252 50	283 56	299
	314	345	376	407	438	469	500	531	562	593	310
46	62	68	74	80	86	92	98	103	109	115	
48	623	654	684	715	746	776	806	837	867	897	315
	121 928	<u>127</u> 958	133 988	139 1018	144 1048	150 1078	156 1108	161 1138	167 1168	173 1198	321
50	179	184	190	195	201	207	212	218	223	229	521
	1227	1257	1287	1316	1346	1376	1405	1434	1464	1493	327
52	234	239	245	250	256	261	266	272	277	282	
54	1523	1552	1581	1610	1640	1669	1698	1727	1756	1785	336
	<u>287</u> 1814	<u>293</u> 1843	<u>298</u> 1871	303 1900	308 1929	313 1958	319 1986	324 2015	329 2044	334 2072	344
56	339	344	349	354	359	364	369	374	379	384	344
	2101	2129	2158	2186	2215	2243	2272	2300	2328	2356	348
58	389	394	398	403	408	413	418	423	428	433	
60	2385	2413	2441	2469	2497	2525	2553	2581	2609	2637	349
	438 2665	442 2693	447 2721	452 2749	457 2777	462 2805	467 2832	471 2860	476 2888	481 2915	349
62	486	491	495	2749 500	505	2605	2032 514	519	2000 524	529	349
	2943	2970	2998	3026	3053	3081	3108	3135	3163	3190	350
64	533	538	543	548	552	557	562	566	571	576	
66	3217	3245	3272	3299	3326	3353	3380	3407	3434	3461	351
	580 3488	585 3515	590 3542	594 3569	599 3596	604 3623	608 3649	613 3676	617 3702	622 3729	354
68	3488 627	631	354Z 636	3569 640	3596 645	3623 649	3649 654	3676 658	663	3729 667	354
	3756	3782	3809	3835	3862	3888	3914	3940	3967	3993	358
70	672	676	680	685	689	694	698	702	707	711	
72	4019	4045	4071	4098	4124	4150	4176	4201	4227	4253	361
	716 4279	720 4305	724 4331	729 4356	733 4382	737 4408	741 4433	746 4459	750 4485	754 4510	365
74	4279	4305	4331	4356	4382	4408	4433	4459	4485	4510	305
	4536	4561	4587	4612	4637	4663	4688	4713	4738	4764	369
76	800	805	809	813	817	821	825	829	833	837	
		DITIONING	3	E	NGINE AN		1		TOTAL AN		
∆ 1.008E0 ∆3 20-3	⊾FUEL = -				$\triangle FUEL =$				△FUEL = 0M-N0-02_0		

11.0 -08F0A320-214 CFM56-5B4/P SA22200000C5KG330 0 018590 0 0 1 1.0 .0 .00 01501 . 990 .000 .000 0 FC0M-N0-02-05-30-0010-180

SIMULATOR

FLIGHT CREW OPERATING MANUAL

FLIGHT PLANNING

2.05.30

SEQ 180 REV 23

P 11

_	_
	h

				INTE	GRATE	D CRUI	SE					
MAX. CRL	JISE THF	RUST LIN	/IITS	IS	A	DIST/	ANCE					
NORMAL	AIR CON	IDITIONI	NG	CG = 3	33.0%	(NM)			ID			
ANTI-ICINO	G OFF					TIME	(MIN)		LR	i FL17		
WEIGHT	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	TAS	
(1000KG)	-										(KT)	
44	0 0	33 6	66 13	99 19	132 25	165 32	198 38	231 44	264 51	296 57	311	
46	329 63	362 69	394 75	427 81	459 88	492 94	524 100	556 106	588 112	621 118	317	
48	653 124	685 130	717 136	749 142	781 148	813 153	845 159	876 165	908 171	940 177	322	
50	971	1003	1034 194	1066	1097	1129 211	1160	1191	1222	1254	330	
52	1285	188 1316	1347	199 1378	1409	1440	216 1470	222 1501	227 1532	233 1563	339	
54	239 1593	244 1624	249 1655	255 1685	260 1716	266 1746	271 1776	277 1807	282 1837	287 1868	345	
	293 1898	<u>298</u> 1928	303 1958	<u>309</u> 1988	314 2019	319 2049	324 2079	330 2109	335 2139	340 2169	346	
56	345 2199	351 2228	356 2258	361 2288	366 2318	372 2348	377 2377	382 2407	387 2437	392 2466	347	
58	397 2496	403 2525	408 2555	413 2584	418 2614	423 2643	428 2672	434 2702	439 2731	444 2760	348	
60	449	454 2818	459 2847	464	469	474 2934	479	484	489	494 3050	350	
62	499	504	509	514	519	524	529	534	539	544		
64	3078 549	3107 553	3136 558	3164 563	3193 568	3221 573	3250 578	3278 582	3306 587	3335 592	354	
66	3363 597	3391 601	3419 606	3448 611	3476 615	3504 620	3532 625	3560 629	3588 634	3616 639	358	
68	3644 643	3671 648	3699 653	3727 657	3755 662	3783 666	3810 671	3838 675	3865 680	3893 684	362	
70	3920 689	3948 693	3975 698	4002 702	4030 707	4057 711	4084 716	4111 720	4139 725	4166 729	366	
72	4193 733	4220 738	4247 742	4274	4301 751	4328	4355 760	4381 764	4408	4435	370	
74	4462	4488	4515	4542	4568	4595	4621	4648	4674	4700	376	
	777 4727	781 4753	785 4779	789 4806	794 4832	798 4858	802 4884	806 4910	810 4936	814 4962	383	
76	819	823 Ditioning	827	831	835 NGINE AN	839	843	847	851 Total An	855		
	$\Delta FUEL = -$		·	E	$\Delta FUEL =$		v		△FUEL =			

11.0 -08F0A320-214 CFM56-5B4/P SA22200000C5KG330 0 018590 0 0 1 1.0 .0 .00 01701 . 990 .000 .000 0 FCOM-N0-02-05-30-0011-180

"

A320

SIMULATOR

FLIGHT CREW OPERATING MANUAL

FLIGHT PLANNING

2.05.30

SEQ 180 REV 23

P 12

R

				INTE	GRATE	D CRUI	SE				
MAX. CRU	JISE THR	UST LIN	/IITS	IS	A	DIST	ANCE				
NORMAL	AIR CON	DITIONI	NG	CG=3	33.0%	(NM)			LR		
ANTI-ICIN	G OFF					TIME				90	
WEIGHT	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	TAS
(1000KG)			<u> </u>	10.4	100	170	700	040	070	210	(KT)
44	0	35 7	69 13	104 20	139 26	173 33	207 39	242 45	276 52	310 58	317
	345	379	413	447	481	515	548	582	616	650	324
46	65	71	77	83	90	96	102	108	114	120	
48	683 126	717 132	750 138	784 144	817 150	850 156	884 162	917 168	950 174	983 180	334
	1016	1049	1082	1115	1148	1180	1213	1246	1278	1311	341
50	185	191	197	203	208	214	220	226	231	237	
52	1344 243	1376 248	1408 254	1441 260	1473 265	1506 271	1538 277	1570 282	1602 288	1635 294	343
	1667	1699	1731	1763	1795	1827	1859	1890	1922	1954	344
54	299	305	310	316	321	327	333	338	344	349	
56	1986 355	2017 360	2049 366	2080 371	2112 377	2144 382	2175 387	2206 393	2237 398	2269 404	345
	2300	2331	2362	2393	2424	2455	2486	2517	2547	2578	349
58	409	414	420	425	430	436	441	446	451	457	
60	2609	2640	2670	2701	2731	2762	2792	2822	2853	2883	354
	462 2913	467 2943	472 2973	477 3003	482 3033	488 3063	493 3093	498 3123	503 3153	508 3183	358
62	513	518	523	528	533	538	543	548	553	558	
64	3213	3242	3272	3301	3331	3361	3390	3419	3449	3478	362
-	563 3507	568 3536	573 3566	578 3595	583 3624	587 3653	592 3682	597 3711	602 3740	607 3769	367
66	611	616	621	626	630	635	640	645	649	654	307
68	3798	3826	3855	3884	3912	3941	3970	3998	4027	4055	373
	659 4084	<u>663</u> 4112	668 4140	<u>672</u> 4169	677 4197	682 4225	686 4253	691 4281	695 4309	700 4337	380
70	4084	709	713	717	722	4225 726	4253	4281	4309	4337 744	380
-	4365	4393	4421	4449	4477	4505	4533	4560	4588	4616	388
72	748	752	757	761	765	770	774	778	782	786	200
74	4643 791	4671 795	4698 799	4726 803	4753 807	4781 811	4808 815	4835 819	4862 824	4890 828	396
	4917	4944	4971	4998	5025	5053	5079	5106	5133	5160	404
76	832	836	840	844	848	852	856	860	864	868	
	AIR CONE		i	E	AFUEL =		4		TOTAL AN △FUEL =		

AIRBUS TRAINING A320 (((

R

FLIGHT PLANNING

2.05.30

P 13 **REV 23**

FLIGHT CREW OPERATING MANUAL

INTEGRATED CRUISE

				INTE	GRATE	D CRUI	SE				
MAX. CRU	JISE THF	rust lin	MITS	IS	Α	DIST/	ANCE				
NORMAL	AIR CON	IDITIONI	NG	CG=3	33.0%	(N	M)				
ANTI-ICIN								LR	FL2	210	
											TAS
WEIGHT	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	
(1000KG)											(KT)
ЛЛ	0	36	72	109	145	181	217	253	289	324	325
44	0	7	13	20	26	33	40	46	52	59	
1C	360	396	431	467	502	538	573	608	644	679	336
46	65	72	78	84	91	97	103	109	116	122	
48	714	749	784	819	854	889	923	958	993	1027	340
40	128	134	140	146	153	159	165	171	177	183	
50	1062	1097	1131	1165	1200	1234	1269	1303	1337	1371	341
50	189	195	201	207	213	220	225	231	237	243	
52	1405	1439	1473	1507	1541	1575	1608	1642	1675	1709	344
JZ	249	255	261	267	273	279	285	290	296	302	0.10
54	1742	1776	1809	1842	1875	1909	1942	1975	2008	2041	348
J4	308	314	319	325	331	336	342	348	353	359	050
56	2074	2106	2139	2172	2204	2237	2270	2302	2334	2367	353
50	365	370	376	381	387	392	398	403	409	414	257
58	2399	2431	2464	2496	2528	2560	2592	2624	2656	2688	357
	420	425	430	436	441	447	452	457	462	468	202
60	2720 473	2751 478	2783 483	2814 489	2846 494	2878 499	2909 504	2940 509	2972 515	3003 520	362
	3034	3066	3097	3128	3159	3190	3221	3252	3283	3314	367
62	3034	3000	2097	3120	3109	2190	3221	3232	3203	3314	307

74	4824	4853	4881	4910	4938	4967	4995	5023	5051	5080	409
/4	799	804	808	812	816	820	824	829	833	837	
70	5108	5136	5164	5193	5221	5249	5277	5305	5333	5361	411
/0	841	845	849	853	857	861	866	870	874	878	
LOW	/ AIR CON	DITIONIN	G	E	INGINE AI	NTI ICE ON	N		TOTAL AN	TI ICE ON	
	$\triangle FUEL = \cdot$	- 0.5 %			$\triangle FUEL =$	+ 2.5 %			∆FUEL =	= + 5 %	
 11.0.00504000	OLA OFMEC	EDA/D CAO	000000000000000000000000000000000000000	2000 0 0105	00 0 0 1 1 0	0 00 0010	000 00	0 000 0 50		- 00.010.10	0

11.0 -08F0A320-214 CFM56-5B4/P SA22200000C5KG330 0 018590 0 0 1 1.0 .0 .00 02101 . 990 .000 .000 0 FC0M-N0-02-05-30-013-180

"

A320

SIMULATOR

FLIGHT CREW OPERATING MANUAL

FLIGHT PLANNING

2.05.30

SEQ 180 REV 23

P 14

R

				INTE	GRATE	D CRUI	SE				
MAX. CRU	JISE THR	iust lin	/IITS	IS	A	DIST	ANCE				
NORMAL	AIR CON	DITIONI	NG	CG=3	33.0%	(NI	M)		LR	= -	
ANTI-ICIN	G OFF					TIME	(MIN)		LN	FL2	230
WEIGHT	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	TAS
(1000KG)	Ŭ	.2	.+	.0	.0	1.0	1.2	1.4	1.0	1.0	(KT)
44	0 0	38 7	76 13	113 20	151 27	189 34	226 40	264 47	301 54	339 60	336
	376	414	451	488	525	562	599	636	673	710	338
46	67	74	80	87	93	100	106	113	119	126	
48	746 132	783 139	819 145	856 152	892 158	929 164	965 171	1001 177	1037 183	1073 189	342
	1109	1145	1181	1217	1253	1288	1324	1359	1395	1430	347
50	196	202	208	214	220	227	233	239	245	251	
52	1466 257	1501	1536	1571 275	1606	1641	1676	1711 299	1746	1781 310	351
	1815	263 1850	269 1884	1919	281 1953	287 1988	293 2022	299	304 2091	2125	35
54	316	322	328	334	339	345	351	357	362	368	
56	2159	2193	2227	2261	2294	2328	2362	2396	2429	2463	362
	374 2496	379 2530	385 2563	390 2596	396 2630	402 2663	407 2696	412 2729	418 2762	423 2795	370
58	429	434	440	2090 445	450	456	461	466	472	477	3/1
	2828	2861	2893	2926	2959	2992	3024	3057	3089	3121	37
60	482	487	492	498	503	508	513	518	523	528	0.0
62	3154 533	3186 538	3218 543	3250 548	3283 553	3315 558	3347 563	3379 568	3411 572	3442 577	38
_	3474	3506	3538	3569	3601	3633	3664	3696	3727	3758	39
64	582	587	592	596	601	606	611	615	620	625	
66	3790 629	3821 634	3852 639	3884 643	3915 648	3946 653	3977 657	4008 662	4039 666	4070 671	40
	4101	4132	4163	4193	4224	4255	4286	4316	4347	4377	40
68	675	680	685	689	694	698	703	707	712	716	
70	4408	4438	4469	4499	4529	4560	4590	4620	4650	4681	40
	721 4711	725	730	734 4801	739 4831	743 4861	747 4890	752 4920	756 4950	761 4980	40
72	765	770	774	778	783	787	791	796	800	804	40;
74	5010	5039	5069	5098	5128	5157	5186	5216	5245	5274	413
	809 5304	813 5333	817 5362	<u>822</u> 5391	826 5420	830 5449	<u>834</u> 5478	839 5507	843 5536	847 5565	41
76	851	856	860	864	868	872	876	880	885	889	71
	AIR CONE		1	E	NGINE AN ∆FUEL =				TOTAL AN ∆FUEL =		

11.0 -08F0A320-214 CFM56-5B4/P SA22200000C5KG330 0 018590 0 0 1 1.0 .0 .00 02301 . 990 .000 .000 0 FCOM-N0-02-05-30-014-180

SIMULATOR

FLIGHT CREW OPERATING MANUAL

FLIGHT PLANNING

2.05.30

SEQ 180 REV 23

P 15

R

				INTE	GRATE	D CRUI	SE				
MAX. CRU	JISE THF	rust lin	/IITS	IS	Α	DIST	ANCE				
NORMAL	AIR CON	IDITIONI	NG	CG=3	33.0%	(N	M)		LR	F 1 4	
ANTI-ICIN	g off					TIME	(MIN)		LN	FL2	250
WEIGHT	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	TAS
(1000KG)	0	20	79	110	150	107	000	075	014	353	(KT) 339
44	0 0	39 7	79 14	118 21	158 28	197 35	236 42	275 48	314 55	353 62	339
10	392	431	470	508	547	586	624	662	700	739	344
46	69 777	76 815	<u>82</u> 853	<u>89</u> 891	96 928	103 966	109 1004	116 1041	122 1079	129 1116	349
48	136	142	149	155	161	168	174	181	187	193	
50	1154	1191	1228	1265	1302	1340	1376	1413	1450	1487	355
	200 1523	206 1560	<u>212</u> 1596	219 1633	225 1669	231 1706	237	243 1778	249 1814	256 1850	361
52	262	268	274	280	286	292	298	304	309	315	
54	1886	1922	1958 333	1993 338	2029 344	2065 350	2100 356	2136	2171	2207	370
	321 2242	327 2277	2312	2347	2382	2417	2452	361 2487	367 2522	372 2556	381
56	378	384	389	395	400	406	411	416	422	427	
58	2591 432	2626 438	2660 443	2695 448	2729 453	2764 459	2798 464	2832 469	2866 474	2900 479	391
	2935	2968	3002	3036	3070	3104	3138	3171	3205	3239	399
60	484	490	495	500	505	510	515	520	525	530	400
62	3272 535	3306 540	3339 545	3373 550	3406 555	3439 560	3473 565	3506 570	3539 575	3572 580	402
_	3605	3638	3671	3704	3737	3770	3803	3836	3868	3901	404
64	585 3934	590 3966	594 3999	599 4031	604 4064	609 4096	614 4128	619 4160	624 4193	629 4225	405
66	3934 633	3966 638	643	4031 648	4064	4096 657	4128 662	4160	672	4225 676	405
68	4257	4289	4321	4353	4385	4417	4448	4480	4512	4543	409
	681 4575	686 4606	690 4638	695 4669	700 4701	704 4732	709 4763	714 4794	718 4825	723 4857	414
70	727	732	737	741	746	750	755	759	764	768	
72	4888	4919	4950	4980	5011	5042	5073	5104	5134	5165	419
	773 5196	777 5226	781 5256	786 5287	790 5317	795 5348	799 5378	803 5408	808 5438	812 5468	423
74	816	821	825	829	834	838	842	846	851	855	
76	5498 859	5528 863	5558 867	5588 872	5618 876	5648 880	5678 884	5707 888	5737 892	5767 896	428
	AIR CON										
4	∆FUEL = -	- 0.5 %			$\triangle FUEL =$	+ 2.5 %			∆FUEL =	= + 5 %	

11.0-08F0A320-214 CFM56-5B4/P SA22200000C5KG330 0 018590 0 0 1 1.0 .0 .00 02501 . 990 .000 .000 0 FC0M-N0-02-05-30-015-180

R

A320

FLIGHT PLANNING

2.05.30

SEQ 180

P 16 REV 23

FLIGHT	CREW	OPERATING	MANUA

INTEGRATED CRUISE

				INTE	GRATE	D CRUI	SE				
MAX. CRU	ISE THF	rust lin	/ITS	IS	Α	DIST/	ANCE				
NORMAL A	AIR CON	IDITIONI	NG	CG = 3	33.0%	(N	M)		ID		
ANTI-ICINO						TIME (MIN)		LR		FL270	
WEIGHT	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	
(1000KG)				400		0.05			0.07	0.07	(KT)
44	0 0	41 7	82 14	123 21	164 28	205 35	245 42	286 49	327 56	367 63	347
46	408 70	448 77	488 83	528 90	568 97	608 104	648 110	688 117	727 124	767 130	353
48	807 137	846 144	885 150	925 157	964 163	1003 170	1042 176	1081 182	1120 189	1159 195	360
50	1198 201	1236 208	1275 214	1313 220	1352 226	1390 232	1428 238	1467	1505 250	1543 256	370
52	1581	1619	1656	1694	1732	1770	1807	1844	1882	1919	382
54	262 1957	268 1994	274 2031	280 2068	286 2105	292 2142	298 2178	303 2215	309 2252	315 2289	392
	321 2325	326 2362	332 2398	338 2435	343 2471	349 2508	354 2544	360 2580	366 2616	371 2652	397
56	377 2688	<u>382</u> 2724	388 2760	393 2796	399 2832	404 2868	410 2903	415 2939	420 2974	426 3010	400
58	431 3046	<u>437</u> 3081	442 3116	447 3152	453 3187	458 3222	464 3257	469 3292	474 3327	480 3362	401
60	485 3397	490 3432	495 3466	501 3501	506 3536	511 3570	516 3605	522 3639	527 3674	532 3708	405
62	537 3742	542 3776	547 3810	553 3844	558 3879	563 3913	568 3946	573 3980	578 4014	583 4048	410
64	588 4081	593 4115	598 4148	603 4182	608 4215	613 4249	618 4282	623 4315	628 4348	632 4381	415
66	637 4415	642 4447	647 4480	652	657	4249 661 4579	4202 666 4612	671 4644	4348 676 4677	4381 680 4709	415
68	685	690	694	4513 699	4546 704	709	713	718	722	727	
70	4742 732	4774 736	4807 741	4839 745	4871 750	4904 754	4936 759	4968 763	5000 768	5032 772	426
72	5064 777	5096 781	5128 786	5159 790	5191 794	5223 799	5255 803	5286 807	5318 812	5349 816	431
74	5381 821	5412 825	5443 829	5474 833	5506 838	5537 842	5568 846	5599 851	5630 855	5661 859	435
76	5692 863	5723 867	5753 872	5784 876	5815 880	5846 884	5876 888	5907 892	5937 897	5968 901	440
LOW	LOW AIR CONDITIONING					NTI ICE ON			TOTAL AN	TI ICE ON	
	$\triangle FUEL = -0.5\%$				△FUEL =				△FUEL = 0M-N0-02_0		

11.0 -08F0A320-214 CFM56-5B4/P SA22200000C5KG330 0 018590 0 0 1 1.0 .0 .00 02701 . 990 .000 .000 0 FCOM-N0-02-05-30-016-180

R

FLIGHT PLANNING

2.05.30

SEQ 180 REV 23

P 17

INTEGRATED CRUISE

				INTE	GRATE	D CRUI	SE				
MAX. CRU	JISE THF	rust lin	/IITS	IS	Α	DIST	ANCE				
NORMAL	AIR CON	IDITIONI	NG	CG = 3	33.0%	(NI	M)		ID		
ANTI-ICIN	G OFF					TIME			LR	FL290	
WEIGHT											TAS
(1000KG)	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	(KT)
44	0 0	43	85 14	128 21	170 28	213 35	255 42	297 49	339 56	381 63	358
	423	465	506	548	<u>28</u> 590	631	672	714	755	796	370
46	70	77	83	90	97	103	110	116	123	129	570
10	837	878	919	959	1000	1041	1081	1122	1162	1202	382
48	136	142	149	155	161	168	174	180	186	192	
50	1243 199	1282 205	1322 211	1362 217	1402 223	1442 229	1482 235	1521 241	1561 247	1601 253	392
	1640	1680	1719	1758	1797	1837	1876	1915	1953	1992	394
52	259	265	271	277	283	289	295	301	307	313	004
	2031	2070	2109	2147	2186	2224	2263	2301	2339	2377	396
54	319	325	330	336	342	348	354	359	365	371	
56	2416	2454	2491	2529 394	2567 399	2605 405	2643 411	2680 416	2718 422	2755 427	400
	377 2793	382 2830	388 2867	2904	2941	2978	3015	3052	3089	427 3126	406
58	433	438	444	449	455	460	466	471	476	482	+00
	3162	3199	3235	3272	3308	3344	3381	3417	3453	3489	411
60	487	493	498	503	508	514	519	524	529	535	
62	3525 540	3561 545	3596 550	3632 555	3668 560	3704 566	3739 571	3775 576	3810 581	3845 586	416
_	3881	3916	3951	3986	4021	4056	4091	4126	4161	4195	422
64	591	596	601	606	611	616	621	625	630	635	122
66	4230	4265	4299	4334	4368	4403	4437	4471	4505	4539	428
66	640	645	650	655	659	664	669	674	678	683	400
68	4573 688	4607 693	4641 697	4675 702	4709 707	4742 711	4776 716	4809 721	4843 725	4876 730	432
	4910	4943	4976	5010	5043	5076	5109	5142	5175	5208	437
70	734	739	744	748	753	757	762	766	771	775	
72	5241	5273	5306	5339	5371	5404	5436	5469	5501	5533	442
12	780 5566	784 5598	788 5630	793 5662	797 5694	802	806 5758	810 5790	815 5822	819 5853	446
74	824	828	832	566Z 836	5694 841	5726 845	5758 849	5790 854	858	5853 862	440
76	5885	5917	5948	5980	6011	6043	6074	6105	6136	6168	450
	866		875	879	883	887	891	896	900 Total An	904	
	LOW AIR CONDITIONING $\triangle FUEL = -0.5 \%$			ENGINE ANTI ICE ON \triangle FUEL = + 2.5 %					△FUEL =		

11.0 -08F0A320-214 CFM56-5B4/P SA22200000C5KG330 0 018590 0 0 1 1.0 .0 .00 02901 . 990 .000 .000 0 FC0M-N0-02-05-30-0017-180

2CM ALL

R

A320

FLIGHT PLANNING

2.05.30

SEQ 180

P 18 REV 23

FLIGHT	CREW	OPERATING	MANUAL

INTEGRATED CRUISE

			INTE	GRATE	D CRUI	SE				
USE THR	UST LIN	/IITS	IS	A	DIST	ANCE				
AIR CON	DITIONI	NG	CG = 3	33.0%	(N	M)		ID		
G OFF					TIME (MIN)		LN		FL310	
		-		-		<u>, ,</u>				TAS
0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	(KT)
0	44	88	132	177	221	264	308	352	395	380
										000
										389
										392
										332
										394
										001
							1991	2031	2072	399
262	268	274	280	286	292	298	304	310	316	
2112	2152	2192	2232	2272	2311	2351	2390	2430	2469	405
322	328	334	340	346	352	358	363	369		
										410
										417
										423
										428
										428
										434
										404
										439
645	650	654	659	664	669	674	678	683	688	
4731	4765	4800	4835	4870	4904	4939	4973	5007	5042	443
693	697	702	707	711	716	721	725	730	735	
5076	5110	5144	5178	5212	5247	5280	5314	5348	5381	448
										452
										455
										455
								6221		458
										430
			-			•				
	AIR CON G OFF 0 0 0 439 68 870 134 1292 1706 262 2112 322 2509 381 2898 437 3279 492 3653 544 4019 595 4378 645 4019 595 4378 645 4731 693 5076 739 5415 828 6074 828 6074 871 828 6074 828 6074 828 6074 871 828 828 6074 828 807 807 807 807 807 807 807 80	AIR CONDITIONII G OFF 0 .2 0 7 439 482 68 75 870 912 134 141 1292 1334 199 205 1706 1747 262 268 2112 2152 322 328 2509 2548 381 386 2898 2936 437 443 3279 3317 492 497 3653 3690 544 5495 600 4378 4414 6455 595 600 4731 4765 693 697 5076 5110 739 744 5748 5781 828 833 6076 5110 739 744 5748 5781 8278 8074 6107	0 .2 .4 0 44 88 0 7 14 439 482 526 68 75 82 870 912 954 134 141 147 1292 1334 1375 199 205 212 1706 1747 1788 262 268 274 2112 2152 2192 322 328 334 2509 2548 2587 381 386 392 2898 2936 2975 437 443 448 3279 3317 3354 492 497 502 3653 3690 3727 544 549 555 4019 4055 4091 595 600 605 4378 4414 4449 645 650	IISE THRUST LIMITS IS AIR CONDITIONING CG = 3 G OFF CG = 3 0 .2 .4 .6 0 44 88 132 0 7 14 21 439 482 526 569 968 75 82 88 870 912 954 997 134 141 147 154 1292 1334 1375 1417 199 205 212 218 1706 1747 1788 1829 262 268 274 280 2112 2152 2192 2232 322 328 334 340 2509 2548 2587 2626 381 386 392 398 2898 2936 2975 3013 437 443 448 454 3279 317 3354	IISE THRUST LIMITS ISA AIR CONDITIONING CG = 33.0% O OFF CG = 33.0% O .2 .4 .6 .8 O 44 88 132 177 O 7 14 21 28 439 482 526 569 612 68 75 82 88 95 870 912 954 997 1039 134 141 147 154 160 1292 1334 1375 1417 1459 199 205 212 218 224 1706 1747 1788 1829 1869 262 268 274 280 286 2112 2152 2192 2232 2272 3279 3317 3354 3392 3429 498 2936 2975 3013 3051 437 443 448	IISE THRUST LIMITS ISA DIST/ AIR CONDITIONING CG = 33.0% (NI G OFF TIME 0 .2 .4 .6 .8 1.0 0 44 88 132 177 221 0 7 14 21 28 35 439 482 526 569 612 655 68 75 82 88 95 102 870 912 954 997 1039 1082 134 141 147 154 160 167 1292 1334 1375 1417 1459 1500 199 205 212 218 224 231 1706 1747 1788 1829 1869 1910 262 268 274 280 286 292 2112 2152 2192 2232 3437 3051 3090 <td< td=""><td>AIR CONDITIONING G OFF$CG=33.0\%$(NM) TIME (MIN)0.2.4.6.81.01.2044881321772212640714212835414394825265696126556886875828895102108870912954997103910821124134141147154160167173129213341375141714591500154226226827428028629229821122152212223222722311235138138639239840440941528982936297530133051309031284374434484544594654703279331733543392342934673504492497502508513518523365336903727376338003837387354454955556056557057559560060561061562062540194055480048354870490443335445495515554956825615571051445178521252475</td><td>ISE THRUST LIMITS ISA CG = 33.0% DISTANCE (NM) G OFF TIME (MIN) 0 .2 .4 .6 .8 1.0 1.2 1.4 0 44 88 132 177 221 264 308 0 7 14 21 28 35 41 48 439 482 526 569 612 655 698 741 68 75 82 88 95 102 108 115 870 912 954 997 1039 1082 1124 1166 134 141 147 154 160 167 173 180 1292 1334 1375 1417 1459 1500 1542 1583 199 205 212 218 224 231 237 243 112 2152 2192 2232 2272 2311 2351 2390</td><td>ISE THRUST LIMITS AIR CONDITIONING ISA CG=33.0% DISTANCE (NM) TIME (MIN) LR 0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 0 7 14 21 28 35 41 48 55 439 482 526 569 612 655 698 741 784 68 75 82 8 95 102 108 115 121 870 912 954 997 1039 1082 1124 1166 1208 134 141 147 154 160 167 173 180 186 1292 1334 1375 1417 1459 1500 1542 1583 1624 1392 212 212 2272 2311 2351 2390 2430 321 <</td><td>ISE THRUST LIMITS AIR CONDITIONING ISA CG=33.0% DISTANCE (NM) TIME (MIN) LR FL3 0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 0 .44 88 132 177 221 264 308 352 395 0 7 14 21 28 35 41 48 55 62 439 482 526 569 612 655 698 741 784 827 68 75 82 88 95 102 108 115 121 128 870 912 954 997 1033 1082 1124 1166 1208 1201 134 141 147 1540 1500 1542 1583 1624 1665 199 205 212 218 22472 231 237 243 249 256 268 2587 <</td></td<>	AIR CONDITIONING G OFF $CG=33.0\%$ (NM) TIME (MIN)0.2.4.6.81.01.2044881321772212640714212835414394825265696126556886875828895102108870912954997103910821124134141147154160167173129213341375141714591500154226226827428028629229821122152212223222722311235138138639239840440941528982936297530133051309031284374434484544594654703279331733543392342934673504492497502508513518523365336903727376338003837387354454955556056557057559560060561061562062540194055480048354870490443335445495515554956825615571051445178521252475	ISE THRUST LIMITS ISA CG = 33.0% DISTANCE (NM) G OFF TIME (MIN) 0 .2 .4 .6 .8 1.0 1.2 1.4 0 44 88 132 177 221 264 308 0 7 14 21 28 35 41 48 439 482 526 569 612 655 698 741 68 75 82 88 95 102 108 115 870 912 954 997 1039 1082 1124 1166 134 141 147 154 160 167 173 180 1292 1334 1375 1417 1459 1500 1542 1583 199 205 212 218 224 231 237 243 112 2152 2192 2232 2272 2311 2351 2390	ISE THRUST LIMITS AIR CONDITIONING ISA CG=33.0% DISTANCE (NM) TIME (MIN) LR 0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 0 7 14 21 28 35 41 48 55 439 482 526 569 612 655 698 741 784 68 75 82 8 95 102 108 115 121 870 912 954 997 1039 1082 1124 1166 1208 134 141 147 154 160 167 173 180 186 1292 1334 1375 1417 1459 1500 1542 1583 1624 1392 212 212 2272 2311 2351 2390 2430 321 <	ISE THRUST LIMITS AIR CONDITIONING ISA CG=33.0% DISTANCE (NM) TIME (MIN) LR FL3 0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 0 .44 88 132 177 221 264 308 352 395 0 7 14 21 28 35 41 48 55 62 439 482 526 569 612 655 698 741 784 827 68 75 82 88 95 102 108 115 121 128 870 912 954 997 1033 1082 1124 1166 1208 1201 134 141 147 1540 1500 1542 1583 1624 1665 199 205 212 218 22472 231 237 243 249 256 268 2587 <

11.0 -08F0A320-214 CFM56-5B4/P SA22200000C5KG330 0 018590 0 0 1 1.0 .0 .00 03101 . 990 .000 .000 0 FC0M-N0-02-05-30-018-180

FLIGHT PLANNING

2.05.30

SEQ 180

P 19 REV 23

FLIGHT CREW OPERATING MANUAL

SIMULATOR

R

				INTE	GRATE	D CRUI	SE					
MAX. CRU	ISE THR	rust lin	1ITS	IS	Α	DIST	ANCE					
NORMAL A	AIR CON	IDITIONII	NG	CG = 3	33.0%	(NI	M)		ID			
ANTI-ICINO	G OFF					TIME (MIN)			LR		FL330	
WEIGHT	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	TAS	
(1000KG)	U	.2	.4	.0	.0	1.0	1.2	1.4	1.0	1.0	(KT)	
44	0	46	92	138	184	230	276	322	367	413	388	
44	0	7	14	21	28	36	43	50	57	64	001	
46	458	503 78	548 84	594 91	639 98	684 105	728 112	773 119	817 125	862 132	391	
-	<u>71</u> 906	950	994	1038	1082	1126	1170	1214	125	1301	398	
48	139	145	152	159	165	172	178	185	191	198	530	
	1344	1387	1430	1473	1516	1559	1602	1644	1687	1730	404	
50	204	211	217	223	230	236	242	249	255	261		
	1772	1814	1856	1898	1940	1983	2024	2066	2107	2149	410	
52	267	274	280	286	292	298	304	310	316	322		
EA	2191	2232	2273	2314	2355	2397	2437	2478	2519	2559	418	
54	328	334	340	346	352	358	363	369	375	381		
56	2600	2640	2681	2721	2761	2802	2841	2881	2921	2961	423	
50	387	392	398	404	409	415	421	426	432	437		
58	3001	3040	3080	3119	3159	3198	3237	3276	3315	3354	429	
	443 3393	448 3432	454 3470	459 3509	465 3547	470 3586	476 3624	481 3663	487 3701	492 3739	434	
60	497	503	508	513	519	524	529	535	540	545	434	
	3777	3815	3853	3891	3928	3966	4004	4041	4079	4116	439	
62	550	555	561	566	571	576	581	586	591	596	+00	
	4153	4190	4227	4264	4301	4338	4375	4412	4448	4485	444	
64	601	606	611	616	621	626	631	636	641	646		
2.2	4522	4558	4594	4630	4667	4703	4739	4775	4811	4847	449	
66	651	656	661	665	670	675	680	685	689	694		
68	4883	4918	4954	4989	5025	5060	5095	5131	5166	5201	452	
UO	699	704	708	713	718	723	727	732	737	741	45.4	
70	5236	5271	5306	5341	5375	5410	5445	5479	5514	5548	454	
	746 5582	750 5616	755 5651	760 5685	764 5719	769 5753	773 5786	778 5820	782 5854	787 5887	456	
72	792	796	800	5685 805	5719 809	5753 814	5786 818	823	827	832	400	
	5921	5954	5988	6021	6054	6088	6120	6153	6186	6219	456	
74	836	840	845	849	854	858	862	867	871	875		
	6252	6284	6317	6349	6382	6414	6446	6479	6511	6543	457	
76	880	884	888	892	897	901	905	909	914	918	,	
LOW AIR CONDITIONING				ENGINE ANTI ICE ON					TOTAL AN			
Δ	FUEL = -	- 0.5 %			$\triangle FUEL =$	+ 2.5 %		∆FUEL =				

11.0 -08F0A320-214 CFM56-5B4/P SA22200000C5KG330 0 018590 0 0 1 1.0 .0 .00 03301 . 990 .000 .000 0 FCOM-N0-02-05-30-019-180

A320

FLIGHT PLANNING

2.05.30

SEQ 180

REV 26

P 20

W			
FLIGHT	CREW	OPERATING	MANUAL

R

				INTE	GRATE	D CRUI	SE				
MAX. CRU	IISE THR	IUST LIN	/IITS	IS	Α	DIST	ANCE				
NORMAL /	AIR CON	DITIONI	NG	CG=3	33.0%	(N	M)		ID	=1.4	
ANTI-ICINO	G OFF					TIME	(MIN)		LR	FL3	350
WEIGHT	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	TAS
(1000KG)	U	.2	.4	.0	.0	1.0	1.2	1.4	1.0	1.0	(KT)
44	0	48	96	143	191	239	286	333	380	428	395
	0 475	7 521	14 568	22 615	29 661	36 708	43 754	50 800	57 846	64 892	401
46	72	78	85	92	99	106	113	120	127	133	401
	938	983	1029	1074	1120	1165	1210	1255	1300	1345	409
48	140	147	153	160	167	173	180	186	193	199	
50	1390	1435	1479	1523	1568	1612	1656	1700	1744	1788	416
	206 1832	<u>212</u> 1875	219 1918	225 1962	231 2005	238 2048	244 2091	250 2134	257 2177	263 2220	423
52	269	275	281	287	2003	300	306	312	318	324	423
	2263	2305	2347	2390	2432	2474	2516	2558	2600	2642	429
54	330	336	342	347	353	359	365	371	377	382	
56	2684	2725	2767	2808	2850	2891	2932	2973	3014	3055	434
	388 3096	394 3136	400 3177	405 3217	411 3258	417 3298	422 3338	428 3378	434 3418	439 3458	440
58	445	450	456	461	467	472	478	483	489	494	440
	3498	3538	3578	3617	3657	3696	3735	3775	3814	3853	444
60	499	505	510	515	521	526	531	537	542	547	
62	3892 552	3931 558	3969 563	4008 568	4047 573	4086 578	4124 583	4162 588	4200 594	4239 599	448
	4277	4315	4353	4391	4428	4466	4504	4541	4578	4616	450
64	604	609	614	619	624	629	634	639	644	649	100
66	4653	4690	4727	4764	4801	4838	4874	4911	4947	4984	452
66	654	659	664	669	673	678	683	688	693	698	450
68	5020 703	5056 707	5092 712	5128 717	5164 722	5200 726	5236 731	5271 736	5307 741	5342 745	452
	5378	5413	5448	5483	5518	5553	5587	5622	5657	5691	453
70	750	755	759	764	769	773	778	782	787	791	
72	5726	5760	5794	5828	5862	5896	5930	5963	5997	6030	454
	796	<u>800</u> 6097	805 6130	809 6163	814 6196	818 6229	823 6262	827 6295	832 6327	836 6359	455
74	6064 841	845	849	854	858	6229 862	867	6295 871	875	6359 880	400
76	6392	6424	6457	6489	6522	002		0,1	0,0	000	455
	884	888	892	897	<u>901</u>						455
	FUEL = -			ENGINE ANTI ICE ON $\triangle FUEL = + 2.5 \%$					TOTAL AN △FUEL =		

FLIGHT PLANNING

2.05.30

P 21

INTEGRATED CRUISE

SEQ 180 REV 26

				INTE	GRATE	D CRUI	SE				
MAX. CRU	JISE THF	RUST LIN	/IITS	IS	Α	DIST	ANCE				
NORMAL	AIR CON	DITION	NG	CG=3	33.0%	(N	M)		ID		
ANTI-ICIN	G OFF					TIME			LR	FL3	370
WEIGHT		-	_	-			. ,				TAS
(1000KG)	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	(KT)
44	0 0	49 7	99 14	148 22	197 29	247 36	296 43	344 50	393 57	442 64	408
	491	539	587	635	683	731	778	826	873	921	415
46	71	78	85	92	99	106	113	120	126	133	
48	968	1015	1062	1109	1156	1203	1249	1295	1341	1388	423
	140 1434	146 1479	153 1525	160 1571	166 1617	173 1662	179 1707	<u>186</u> 1753	192 1798	199 1843	430
50	205	212	218	224	231	237	243	250	256	262	430
	1888	1933	1977	2022	2066	2111	2155	2199	2243	2287	435
52	268	274	281	287	293	299	305	311	317	323	
54	2331 329	2374 335	2418 341	2461 347	2505 353	2548 359	2591 364	2634 370	2677 376	2720 382	441
	2763	2805	2848	2890	2933	2975	304	3059	3101	3143	445
56	388	393	399	405	410	416	422	427	433	439	
58	3185	3226	3267	3309	3350	3391	3432	3473	3514	3555	448
	444 3596	450 3636	455 3676	461 3716	466 3757	472 3797	477 3837	483 3876	488 3916	494 3956	450
60	499	505	510	515	521	526	531	537	542	547	430
	3996	4035	4074	4113	4152	4191	4230	4268	4307	4346	450
62	553	558	563	568	574	579	584	589	594	599	454
64	4384 604	4422 609	4460 614	4498 620	4536 625	4574 630	4611 635	4649 640	4686 645	4724 649	451
	4761	4798	4835	4872	4909	4945	4981	5018	5054	5090	452
66	654	659	664	669	674	679	684	688	693	698	
68	5126	5162	5198	5234	5270	5305	5341	5376	5411	5446	453
	703 5481	708	712	717	722	727	731	736	741	745	453
70	750										400
72											
74											
76											
LOW	AIR CONI		;	E	AFUEL =	ITI ICE ON	4		TOTAL AN ∆FUEL =		

(((

A320

FLIGHT PLANNING

2.05.30

SEQ 180

P 22 REV 30

FLIGHT CREW OPERATING MANUAL

INTEGRATED CRUISE

				INTE	GRATE	D CRUI	SE				
MAX. CRU	JISE THR	rust lin	/IITS	IS	Α	DIST	ANCE				
NORMAL	AIR CON	IDITIONI	NG	CG=3	33.0%	(N	M)		LR	F 1 /	
ANTI-ICIN	G OFF					TIME	(MIN)		LN	FL3	59U
WEIGHT (1000KG)	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	TA (K
44	0 0	51 7	102 14	152 21	203 29	254 36	304 43	354 50	404 57	454 64	42
46	505 71	554 78	603 84	653 91	702 98	752 105	800 112	849 118	898 125	947 132	43
48	996 138	1044 145	1092 152	1140 158	1188 165	1236 171	1283 178	1331 184	1378 191	1426 197	43
50	1473 204	1520 210	1567 216	1614 223	1661 229	1707 235	1754 242	1800 248	1846 254	1892 260	44
52	1938 266	1984 273	2029 279	2075 285	2121 291	2166 297	2211 303	2256 309	2301 315	2346 321	44
54	2391 327 2830	2435 333 2873	2479 339 2916	2524 345 2959	2568 351 3002	2612 357 3045	2656 362 3087	2699 368 3129	2743 374 3171	2786 380 3213	44
56	2830 386 3256	2073 391 3297	397 3339	403 3380	409 3422	3045 414 3463	420 3504	426	431 3586	437 3627	44
58	442	448	453 3747	459 3787	465	470	475	481 3947	486	492	45
60	497 4064	502 4103	508 4142	513 4182	518 4221	524	529	534	539	545	
62	550	555	560	565	571						45
<u>64</u>											
<u>66</u> 68											
<u> </u>											
72											
74											
76											
LOW	AIR CONI		6	E	NGINE AN ∆FUEL =	NTI ICE ON	1		TOTAL AN		

INTEGRATED CRUISE

CLIMB CORRECTION

The planner must correct the values for the fuel and the time obtained from the integrated cruise tables with the numbers given in the following tables. The tables which are established for M.78 and long range speed, take into account climbing from the brake release point at 250kt/300kt/M.78.

CORRECTION ON FUEL CONSUMPTION (1000 KG) WEIGHT AT BRAKE RELEASE (1000 KG) Time FL Correction 50 54 58 62 66 70 74 78 0.8 0.8 0.9 0.9 390 _ _ 4 min 370 0.8 0.8 0.9 0.9 0.9 1.0 4 min _ _ 0.7 0.8 0.8 0.9 350 0.9 1.0 1.0 1.1 5 min 330 0.7 0.7 0.8 0.8 0.9 0.9 1.0 1.0 5 min 310 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1.0 5 min 290 0.6 0.7 0.7 0.7 0.8 0.8 0.9 0.9 5 min 270 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.9 5 min 250 0.5 0.6 0.6 0.6 0.8 0.7 0.7 0.8 5 min 200 0.5 0.5 0.5 0.6 0.6 0.6 0.4 0.7 5 min 150 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.6 4 min 100 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 3 min

M.78 and LONG RANGE SPEED

STEP CLIMB CORRECTION

When the flight includes one or more step climbs (2000 feet below FL290, 4000 feet above), apply a correction of 50 kg per step climb to the fuel consumption.

DESCENT CORRECTION

Correct the fuel and time values determined in the integrated cruise tables as follows to take into account the descent down to 1500 feet followed by a 6 minute IFR approach and landing.

		CORRE	CTION ON	FUEL CONS	UMPTION (1000 KG)		
FL		WEIG	ht overhe	AD DESTIN	ATION (100	0 KG)		Time
FE	46	50	54	58	62	66	70	Correction
390	0.1	0.1	0.2	0.2	0.2	0.3	-	10 min
370	0.1	0.1	0.1	0.2	0.2	0.3	0.3	10 min
350	0.1	0.1	0.1	0.2	0.2	0.2	0.3	10 min
330	0.1	0.1	0.1	0.2	0.2	0.2	0.3	10 min
310	0.1	0.1	0.1	0.2	0.2	0.2	0.3	10 min
290	0.1	0.1	0.1	0.2	0.2	0.2	0.2	10 min
270	0.1	0.1	0.1	0.1	0.2	0.2	0.2	10 min
250	0.1	0.1	0.1	0.1	0.2	0.2	0.2	10 min
200	0	0.1	0.1	0.1	0.1	0.1	0.2	10 min
150	0	0	0.1	0.1	0.1	0.1	0.1	9 min
100	0	0	0	0	0	0.1	0.1	8 min

INTRODUCTION

The following flight planning tables allow the planner to determine trip fuel consumption and trip time required to cover a given air distance. These tables are established for :

- Takeoff
- Climb profile 250kt/300kt/M.78
- Cruise Mach number M.78/LR
- Descent profile M.78/300kt/250kt
- Approach and landing 120 kg 6 minute IFR
- ISA
- CG = 33 %
- Normal air conditioning
- Anti ice OFF

They are based upon a reference landing weight of 55 000 kg.

- <u>Note</u> : 1. In the tables, the asterisk (*) means that a step climb of 4000 ft must be flown to reach the corresponding FL.
 - 2. To obtain a flight plan at optimum cruise level, the highest flight level desired within the flight has to be selected in the table.
 - 3. For each degree Celcius above ISA temperature apply fuel correction 0.015 (kg/°C/NM) × △ISA (°C) × Air Distance (NM).

CORRECTION FOR DEVIATION FROM REFERENCE LANDING WEIGHT

The fuel consumption must be corrected when the actual landing weight is different from the reference landing weight. If it is lower (or greater) than the reference landing weight, subtract (or add) the value given in the correction part of the table per 1000 kg below (or above) the reference landing weight.

EXAMPLE

The following is an example of a complete flight plan based on the assumptions :

- Zero fuel weight : 60 000 kg = landing weight at alternate airport
- Cruise M.78 at FL370
- Ground distance from departure to destination : 1800 NM
- Average wind during flight : 40 kt (headwind)
- ISA conditions
- "En route" reserve : 5 %
- Ground distance from destination to alternate : 200 NM, no wind at FL200

To calculate the flight plan, a reverse calculation is needed, i.e. start with the landing weight at alternate (the schematic on 2.05.10 p 4 gives an overview of the calculation to be performed).

P 2

- 1. Alternate fuel and time
 - From 2.05.50 p 2 ;
 - Alternate time = 40 min

Alternate fuel : 1 559 + 11 \times (60 - 55) = 1 614 kg

- 2. Holding fuel and time
 - A 30 min holding is assumed at 1500 ft. Read from 3.05.25 p 2, holding fuel = 1 300 kg
- 3. At destination, the landing weight = $60\ 000\ +\ 1\ 614\ +\ 1\ 300\ =\ 62\ 914\ kg$
- 4. Evaluation of the air distance between departure and destination.
 - The "Ground distance/Air distance" conversion table from 2.05.60 p 2 shows that the corresponding air distance is : 1 975 NM.
- 5. Trip fuel and time
 - Enter air distance and flight level 370 (see table on 2.05.40 p 5), read the corresponding values of fuel consumption and time, for the reference landing weight and without deviation from ISA.
 - $Fuel\,=\,10\,\,478\,\,kg$

Time = 4 h 37 min

- Correction for landing weight
 - \bigtriangleup fuel consumption = 146 \times (62.914 55) = 1 155 kg
- Trip reserves (5 %) = 0.05 × (10 478 + 1 155) = 582 kg
- 6. Taxi fuel = 140 kg (2.05.10 p 2)
- 7. Total fuel on board (Block fuel) :

 $10\ 478\ +\ 1\ 155\ +\ 582\ +\ 1\ 300\ +\ 1\ 614\ +\ 140\ =\ 15\ 269\ kg$

FLIGHT PLANNING **OUICK DETERMINATION OF F-PLN**

2.05.40

SE0 180

REV 23

P 3

FLIGHT PLANNING FROM BRAKE RELEASE TO LANDING CLIMB : 250KT/300KT/M.78 - CRUISE : M.78 - DESCENT : M.78/300KT/250KT IMC PROCEDURE : 120 KG (6MIN) Ref. Landing weight = 55000 kg FUEL CONSUMED (KG) ISA CG = 33.0 %NORMAL AIR CONDITIONING ANTI-ICING OFF TIME (H.MIN) AIR CORRECTION ON FUEL CONSUMPTION FLIGHT LEVEL DIST. (KG/1000KG) FL290 FL330 FL370 FL390 (NM) FL310 FL350 0.38 0.38 0.38 0.38 0.42 0.42 0.42 0.42 0.45 0.45 0.45 0.45 0.45 0.45 0.48 0.48 0.48 0.48 0.49 0.49 0.51 0.52 0.52 0.52 0.52 0.52 0.55 0.55 0.55 0.55 0.55 0.55 0.58 0.58 0.58 0.58 0.59 0.59 1.01 1.02 1.02 2721 1.05 1.05 1.05 1.05 1.05 1.08 1.08 1.08 1.09 1.09 1.11 1.11 1.12 1.12 1.12 1.12 1.15 1.15 1.14 1.17 1.18 1.18 1.19 1.19 1.19 1.21 1.21 1.21 1.22 1.22 1.22 1.24 1.25 1.25 1.25 1.25 1.29 <u>1.29</u> 1.27 1.28 1 28 1.29 1.30 1.32 1.34 1.35 1.34 1.35 1.36 1.38 1 38 1.39 1.39 1.39 1.40 1.41 1.41 1.42 1.42 1.42 1.43 1.44 1.45 1.45 1.46 1.46 1.47 1.48 1.49 1.49 1.49 1.50 1.51 1.511.52 1.52 1.52 1.56 1.53 1 54 1 55 1.55 1.59 1.59 1.57 1.57 1.58 1.59 2.00 2.01 2.01 2.02 LOW AIR CONDITIONING ENGINE ANTI ICE ON TOTAL ANTI ICE ON $\triangle FUEL = + 2 \%$ $\triangle FUEL = -0.5 \%$ $\triangle FUEL = + 4.5 \%$ FLIP23D A320-214 CFM56-5B4/P SA3420 03301.000011 0250300 .7800 .00200 120 0300350 55 0 100100 40100 18590 FC0M-02-05-40-003-180

A320

FLIGHT CREW OPERATING MANUAL

FLIGHT PLANNING

2.05.40

P 4

QUICK DETERMINATION OF F-PLN

SEQ 180 REV 23

		HT = 550	IMC PRO 00 KG	ISA CG = 3	1	FU	EL CONS	UMED (K	G)		
NTI-ICING		HUNING		ιu = 3	3.0 %	TIME (H.MIN)					
AIR	011						CORRECTION ON				
DIOT			FUOLIT					CONSUMP			
DIST.			FLIGHT I				FL290	KG/1000KG) FL330	FL370		
(NM)	290	310	330	350	370	390	FL310	FL350	FL390		
825	5316 2.00	5090 2.01	4900 2.01	4744 2.02	4634 2.02	4592 2.02	29	39	5		
850	5464 2.03	5231 2.04	5033 2.05	4871 2.05	4757 2.06	4714 2.06	30	40	5		
875	5613	5371	5166	4998	4880	4836	31	41	6		
900	2.06 5762	2.07	2.08	2.09 5125	2.09	<u>2.09</u> 4958	32	42	6		
	<u>2.10</u> 5911	2.10 5652	2.11 5433	<u>2.12</u> 5253	<u>2.13</u> 5127	<u>2.13</u> 5080	32	43	6		
925	2.13	2.14	2.15	2.15	2.16	2.16	33	44	6		
950	2.16	2.17	2.18	2.19	2.19	2.19					
975	6209 2.19	5934 2.20	5700 2.21	5508 2.22	5374 2.23	5326 2.23	34	45	6		
1000	6358 2.23	6075 2.24	5833 2.24	5636 2.25	5498 2.26	5449 2.26	35	46	6		
1025	6507 2.26	6216 2.27	5967 2.28	5763 2.29	5622 2.29	5572 2.29	35	47	7		
1050	6657 2.29	6357 2.30	6101 2.31	5892 2.32	5746 2.33	5695 2.33	36	48	7		
1075	6806	6498 2.33	6235 2.34	6020 2.35	5871	5819	37	49	7		
1100	2.32 6955 2.36	6639 2.37	6369	6148 2.39	2.36 5995 2.39	2.36 5943 2.39	38	50	7		
1125	7105	6781	2.38 6503	6276	6120	6067	38	51	7		
1150	2.39 7255	2.40	2.41	2.42	2.43	2.43 6191	39	52	8		
1175	2.42	2.43 7064	2.44 6772	2.45 6534	2.46 6370	2.46 6316	40	53	8		
-	2.45 7555	2.47	2.48 6907	2.49 6662	2.49 6495	2.49 6441	41	55	8		
1200	2.49	2.50	2.51	2.52	2.53	2.53	41	56	8		
1225	2.52	2.53	2.54	2.56	2.56	2.56					
1250	7855 2.55	7490 2.56	7176 2.58	6921 2.59	6746 3.00	6691 3.00	42	57	8		
1275	8005 2.58	7632 3.00	7311 3.01	7050 3.02	6872 3.03	6817 3.03	43	58	8		
1300	8155 3.02	7775 3.03	7446 3.04	7179 3.06	6998 3.06	6943 3.06	44	59	9		
1325	8305 3.05	7917 3.06	7582 3.08	7309 3.09	7124 3.10	7069 3.10	45	60	9		
1350	8456	8059	7717	7439 3.12	7251 3.13	7195	45	61	9		
1375	3.08 8606	3.10 8202	3.11 7852	7569	7377	7322	46	63	9		
1400	3.12 8757	3.13 8345	3.14 7988	3.16 7699	3.16 7504	3.16 7449	47	64	9		
	3.15	3.16 8488	3.18 8124	3.19 7829	3.20	3.20 7576	48	65	10		
1425	3.18	3.19	3.21	3.22	3.23	<u>3.23</u> 7704	49	66	10		
1450	3.21	8630 3.23	8259 3.24	7959 3.26	3.26	3.26	49	00	10		

FLIGHT CREW OPERATING MANUAL

FLIGHT PLANNING

2.05.40

Ρ5

QUICK DETERMINATION OF F-PLN

SEQ 180 | REV 23

		HT = 550	IMC PRO 00 KG	IS/ CG = 3	4		EL CONS	UMED (K	G)		
NTI-ICING	IR CONDI	HUNING		$c_0 = c$	33.0 %		TIME (H.MIN)				
AIR	011		I		I		CO	RRECTION (
DIST.			FLIGHT	EVEL				CONSUMP KG/1000KG)			
	200	210			270	200	FL290	FL330	FL37(
(NM) 1450	290 9059	310 8630	330 8259	350 7959	370 7758	390 7704	FL310 49	FL350 66	FL390 10		
1475	<u>3.21</u> 9210	3.23 8773	3.24 8395	3.26 8089	3.26 7885	3.26 7832	49	67	10		
1500	3.25 9361	3.26 8917	3.27 8531	3.29 8220	3.30 8013	<u>3.30</u> 7944	50	68	10		
	<u>3.28</u> 9512	3.29 9060	3.31 8668	3.32 8351	3.33 8141	<u>3.33*</u> 8074	51	70	10		
1525	3.31 9664	3.33 9203	3.34 8804	3.36 8481	3.37 8268	<u>3.37*</u> 8205	52	71	11		
1550	<u>3.34</u> 9815	3.36 9347	3.37	3.39 8612	3.40 8396	<u>3.40*</u> 8336	53	72	11		
1575	3.38	3.39 9490	3.41	3.42	3.43	3.43*	53	72	11		
1600	3.41	3.42	3.44	3.46	3.47	8467 3.47*					
1625	10119 3.44	9634 3.46	9214 3.47	8875 3.49	8653 3.50	8598 3.50*	54	74	11		
1650	10271 3.47	9778 3.49	9351 3.51	9006 3.52	8782 3.53	8730 3.53*	55	76	11		
1675	10423 3.51	9922 3.52	9488 3.54	9138 3.56	8910 3.57	8862 3.57*	56	77	12		
1700	10575 3.54	10066 3.56	9625 3.57	9270 3.59	9039 4.00	8993 4.00*	57	78	12		
1725	10727 3.57	10210 3.59	9762 4.01	9402 4.02	9168 4.03	9125 4.03*	58	79	12		
1750	10880 4.00	10354 4.02	9900 4.04	9534 4.06	9298 4.07	9257 4.07*	59	81	12		
1775	11032 4.04	10499 4.05	10038	9667 4.09	9427 4.10	9390 4.10*	59	82	12		
1800	11185	10643	10176	9800	9558	9522	60	83	13		
1825	4.07	10788	4.11 10314	4.12 9933	4.13 9689	4.13* 9655	61	84	13		
1850	4.10	4.12	4.14	4.16 10066	4.17 9820	<u>4.17*</u> 9788	62	86	13		
1875	4.13	4.15	4.17	4.19 10199	4.20 9951	4.20* 9921	63	87	13		
1900	4.17	4.19	4.21	4.22	4.24	4.23*	64	88	13		
	4.20	4.22	4.24	4.26 10466	4.27	<u>4.27*</u> 10188	65	90	14		
1925	4.23	4.25	4.27	4.29	4.30	4.30* 10321	66	91	14		
1950	4.26	4.28	4.30	4.33	4.34	4.33*	66	92	14		
1975	4.30	4.32	4.34	4.36	4.37	4.37*	67	94	14		
2000	4.33	4.35	4.37	4.39	4.40	4.40*	68	94			
2025	12562 4.36	11948 4.38	11423 4.40	11002 4.43	4.44	10723 4.44*			15		
2050	12716 4.40	12094 4.42	11562 4.44	11137 4.46	10875 4.47	10858 4.47*	69	97	15		
2075	12869 4.43	12240 4.45	11701 4.47	11271 4.49	11008 4.50	10992 4.50*	70	98	15		

FLIP23D A320-214 CFM56-5B4/P SA3420 03301.000011 0250300 .7800 .00200 120 0300350 55 0 100100 40100 18590 FC0M-02-05-40-005-180

A320

FLIGHT CREW OPERATING MANUAL

FLIGHT PLANNING

2.05.40

P 6

QUICK DETERMINATION OF F-PLN

SEQ 180 | REV 23

		HT = 550	IMC PRO 00 KG	IS <i>i</i>	4	FU	EL CONS	UMED (K	3)
NTI-ICING	IR CONDI	HUNING		CG = 33.0 %			TIME (I	H.MIN)	
AIR	011		I	CORRECTION ON					
DIST.			FLIGHT I	EVEL				CONSUMP KG/1000KG)	
F					070		FL290	FL330	FL370
(NM) 2075	290 12869	310 12240	330 11701	350 11271	370 11008	390 10992 4.50*	FL310 70	FL350 98	FL390
2100	4.43	4.45	4.47	4.49	4.50	4.50* 11127	71	99	15
	4.46	4.48	4.50	4.53	4.54	4.54* 11262	72	101	15
2125	4.49	4.51	4.54	4.56	4.57	4.57*	72	102	16
2150	4.53	4.55	4.57	4.59	5.01	5.00*	73	102	
2175	4.56	12824 4.58	12260 5.00	5.03	5.04	11532 5.04*			16
2200	13640 4.59	12970 5.01	12400 5.04	11947 5.06	11676 5.07	11667 5.07*	75	105	16
2225	13794 5.02	13117 5.05	12540 5.07	12082 5.09	11810 5.11	11803 5.10*	76	107	16
2250	13948 5.06	13264 5.08	12680 5.10	12218 5.13	11945 5.14	11939 5.14*	77	108	17
2275	14103 5.09	13410 5.11	12821 5.14	12354 5.16	12080 5.17	12074 5.17*	78	109	17
2300	14258 5.12	13557 5.14	12962 5.17	12490 5.19	12214 5.21	12210 5.20*	79	111	17
2325	14412	13704	13102	12627	12350	12347	80	112	17
2350	5.15 14567	5.18 13851	5.20 13243	5.23 12764	5.24 12485	5.24* 12483	81	114	17
2375	5.19 14723	5.21 13998	5.24 13384	5.26 12900	5.27 12621	5.27* 12620	81	115	18
2400	5.22 14878	5.24 14146	5.27	5.29	5.31 12758	5.30* 12757	82	117	18
	5.25 15034	5.28 14293	5.30 13667	<u>5.33</u> 13174	5.34 12894	5.34* 12894	83	119	18
2425	5.28 15190	5.31	5.33 13808	5.36 13312	5.37 13031	5.37*	84	120	18
2450	5.32	5.34 14588	5.37 13950	5.39 13449	5.41	5.40*	85	123	19
2475	5.35	5.37	5.40	5.43	5.44	5.44*	86	122	19
2500	15502 5.38	14736 5.41	5.43	13587 5.46	13305 5.48	13307 5.47*			
2525	15658 5.41	14884 5.44	14234 5.47	13725 5.49	13442 5.51	13445 5.50*	87	125	19
2550	15815 5.45	15033 5.47	14376 5.50	13863 5.53	13580 5.54	13584 5.54*	88	126	19
2575	15971 5.48	15181 5.51	14518 5.53	14001 5.56	13718 5.58	13722 5.57*	89	128	19
2600	16128 5.51	15330 5.54	14660 5.57	14139 5.59	13856 6.01	13861 6.00*	90	129	20
2625	16284 5.55	15479 5.57	14803 6.00	14278 6.03	13994 6.04	14000 6.04*	91	131	20
2650	16441 5.58	15628 6.00	14946 6.03	14416 6.06	14133 6.08	14139 6.07*	92	133	20
2675	16598	15777	15089	14555	14271	14279	93	134	20
2700	6.01 16755 6.04	6.04 15926 6.07	6.07 15232 6.10	6.09 14694 6.13	<u>6.11</u> 14410 6.14	6.10* 14418 6.14*	94	136	21

FLIGHT CREW OPERATING MANUAL

FLIGHT PLANNING

2.05.40

Ρ7

QUICK DETERMINATION OF F-PLN

SEQ 180 | REV 23

ORMAL A <u>NTI-ICING</u> AIR		TIONUNIO	00 KG	$\begin{vmatrix} SA \\ CG = 33.0 \% \end{vmatrix} $			UEL CONSUMED (KG)			
		HOMING		τα = .	53.0 %		TIME (I	H.MIN)		
								RRECTION		
DIST.			FLIGHT	I EVEI				CONSUMP KG/1000KG		
F					_	_	FL290	FL330	FL370	
(NM)	290	310 15926	330	350	370	390	FL310 94	FL350	FL390	
2700	16755 6.04	6.07	15232 6.10	14694 6.13	14410 6.14	14418 6.14*	•	136	21	
2725	16912 6.08	16076 6.10	15375 6.13	14833 6.16	14550 6.18	14558 6.17*	95	137	214	
2750	17070	16225 6.14	15519	14973	14689	14698 6.20*	96	139	21	
2775	6.11 17227	16375	<u>6.17</u> 15663	6.20 15113	6.21 14829	14838	97	141	21	
-	<u>6.14</u> 17385	6.17 16525	6.20 15807	6.23 15254	6.25 14969	6.24* 14979	99	142	22	
2800	6.17	6.20	6.23	6.26	6.28	6.27*				
2825	17542 6.21	16675 6.24	15951 6.27	15395 6.30	15109 6.31	15119 6.31*	100	144	223	
2850	17700 6.24	16825 6.27	16095 6.30	15535 6.33	15251 6.35	15260 6.34*	101	146	22	
2875	17858 6.27	16975 6.30	16240 6.33	15677 6.36	15393 6.38	15402 6.37*	102	148	22	
2900	18016	17125	16384	15818	15535	15543	103	150	22	
2925	6.30 18175	6.33 17275	6.36 16529	6.40 15960	<u>6.41</u> 15675	6.41* 15685	104	151	23	
	<u>6.34</u> 18333	6.37 17426	6.40 16674	<u>6.43</u> 16101	6.45* 15820	6.44* 15827	105	153	23	
2950	6.37	6.40	6.43	6.46	6.48*	6.47*				
2975	18492 6.40	17577 6.43	16819 6.46	16243 6.50	15964 6.52*	15969 6.51*	106	155	23	
3000	18650 6.43	17727 6.47	16964 6.50	16385 6.53	16109 6.55*	16112 6.54*	107	157	23	
3025	18809 6.47	17878	17109 6.53	16528 6.56	16255 6.58*	16254 6.57*	108	159	24	
3050	18968	18030	17255	16670	16400	16397	109	161	24	
3075	6.50 19127	6.53 18181	6.56 17401	7.00	7.01*	7.01* 16540	110	162	24	
3100	6.53 19286	6.56 18333	7.00	7.03	7.05*	7.04*	111	164	24	

FLIP23D A320-214 CFM56-5B4/P SA3420 03301.000011 0250300 .7800 .00200 120 0300350 55 0 100100 40100 18590 FC0M-02-05-40-007-180

A320

FLIGHT CREW OPERATING MANUAL

FLIGHT PLANNING

2.05.40

P 8

QUICK DETERMINATION OF F-PLN

SEQ 180 | REV 23

	ng weigi Jr condi	HT = 550	00 KG	CEDURE : IS/ CG = 3	7	FU	EL CONS	UMED (K	G)
NTI-ICING		HUNING		ιu = 3	13.0 %		TIME (
AIR	011						CO	RRECTION (
DIST.			FLIGHT	FVFI				CONSUMP KG/1000KG)	
(NM)	290	310	330	350	370	390	FL290 FL310	FL330 FL350	FL370 FL390
200	1599 0.39	1602 0.39	1605 0.39	1609 0.38			15	16	
225	1732 0.43	1731 0.43	1730 0.42	1731 0.42	1733 0.42		16	17	1
250	1865	1860	1855	1852	1852	1855	18	19	2
275	0.47	0.46	0.46	0.45	0.45	0.45	19	20	2
300	0.51 2132	0.50 2118	0.49 2105	0.49 2096	0.49 2090	0.48 2090	20	21	2
325	0.54 2265	0.54 2247	0.53 2231	0.52 2218	0.52	0.52 2208	22	23	2
350	0.58 2399	0.57	0.56 2357	0.56 2341	0.55 2329	0.55	23	24	2
375	1.02 2532 1.06	1.01 2507	1.00 2483	0.59 2463	0.59 2448	0.59 2443	24	26	2
400	2666	1.05 2637	1.04 2609	1.03 2586	1.02 2568	1.02 2562	25	27	3
400	1.09 2801	1.08 2767	1.07 2735	1.06 2708	1.06 2688	<u>1.05</u> 2680	27	28	3
450	1.13 2935	<u>1.12</u> 2897	<u>1.11</u> 2861	1.10 2831	1.09 2808	<u>1.09</u> 2798	28	30	3
475	<u>1.17</u> 3069	1.16 3027	1.14 2988	1.13 2954	1.12 2928	<u>1.12</u> 2917	29	31	3
500	1.21 3204	1.19 3158 1.23	1.18 3114	1.17 3078	1.16 3048	<u>1.15</u> 3036	31	33	3
525	1.24 3339	3289	1.21 3241	1.20 3201	1.19 3169	<u>1.19</u> 3155	32	34	3
550	1.28 3474	1.26 3420	1.25 3368	1.23 3325	1.22 3290	<u>1.22</u> 3275	33	36	4
575	1.32 3609	1.30 3551	1.28 3496	1.27 3448	1.26 3411	<u>1.25</u> 3394	35	37	4
600	1.36 3744	1.34 3682	1.32 3623	1.30 3572	1.29 3532	<u>1.29</u> 3514	36	38	4
625	1.39 3880	1.37 3813	1.35 3750 1.39	1.34 3696 1.37	1.32 3653	<u>1.32</u> 3634	38	40	4
650	1.43 4016	<u>1.41</u> 3945	3878	3821	1.36 3774	1.35 3754	39	41	4
675	1.47 4152	1.45 4076	1.42 4006	1.41 3945	1.39 3896	1.39 3875	40	43	4
700	1.50 4288	1.48 4208	1.46 4134	1.44 4070	1.43 4018	<u>1.42</u> 3996	42	44	5
725	1.54 4424	1.52 4340	1.49 4262	1.47 4194	1.46 4140	1.45	43	46	5
750	1.58 4561	1.55 4473	1.53 4391	1.51 4319	1.49 4262	1.49 4238	44	47	5
775	2.02	1.59 4605	1.56 4520	1.54 4445	1.53 4385	1.52 4360	46	48	5
800	2.05 4834	2.03 4738	2.00	1.58 4570	1.56 4507	1.55 4482	47	50	5
825	2.09 4971 2.13	2.06 4870 2.10	2.03 4777 2.07	2.01 4696 2.05	1.59 4630 2.03	1.59 4604 2.02	48	51	6

SIMULATOR

FLIGHT CREW OPERATING MANUAL

FLIGHT PLANNING

2.05.40

P 9

QUICK DETERMINATION OF F-PLN

SEQ 180 | REV 23

		HT = 550	00 KG	<u>CEDURE :</u> ISA CG = 3	1	FU	EL CONS	UMED (KO	G)
NTI-ICING	AIR CONDI i OFF	HUNING		CG = 3	3.0 %		TIME (I	H.MIN)	
AIR							CO FUEL	RRECTION (CONSUMP	TION
DIST.			FLIGHT				FL290	KG/1000KG) FL330	FL370
(NM)	290	310	330	350	370	390	FL310	FL350	FL390
825	4971 2.13	4870 2.10	4777 2.07	4696 2.05	4630 2.03	4604 2.02	48	51	6
850	5108 2.16	5003 2.13	4907 2.10	4821 2.08	4753 2.06	4726 2.05	50	53	6
875	5246 2.20	5137 2.17	5036 2.14	4947 2.11	4876 2.09	4849 2.09	51	54	6
900	5383 2.24	5270 2.21	5166 2.17	5073 2.15	5000 2.13	4971 2.12	53	56	6
925	5521 2.27	5403 2.24	5295 2.21	5200 2.18	5123 2.16	5094 2.15	54	57	6
950	5659 2.31	5537 2.28	5425 2.24	5326 2.22	5247 2.20	5218 2.19	55	59	7
975	5797 2.35	5671 2.31	5555 2.28	5453 2.25	5371 2.23	5341 2.22	57	60	7
1000	5936	5805	5686	5580	5495 2.26	5465	58	62	7-
1025	2.38	2.35 5939	2.31 5816	2.28	5620	2.25	60	63	7
1050	2.42 6213	2.38 6073	2.35 5947	2.32 5834	2.30 5744	2.29 5713	61	65	7
1075	2.46	2.42	2.38	2.35 5961	2.33	<u>2.32</u> 5837	62	66	7
1100	2.49 6491	2.46	2.42	2.39	2.36	2.35 5962	64	67	8
1125	2.53	2.49	2.45 6340	2.42	2.40	2.39 6087	65	69	8
1150	2.57 6770	2.53	2.49 6471	2.45 6345	2.43 6244	2.42 6212	67	70	8
1175	<u>3.00</u> 6910	2.56 6747	2.52 6603	2.49 6473	2.46 6370	2.45 6337	68	72	8
1200	3.04 7049	3.00	2.56 6734	2.52 6601	2.50 6495	2.49 6463	69	73	8
1200	<u>3.08</u> 7190	3.03 7018	2.59 6866	2.55	2.53	2.52 6589	71	75	9
1250	<u>3.11</u> 7330	3.07	3.02	2.59	2.56	<u>2.55</u> 6715	72	76	9:
1250	3.15	3.10 7290	3.06 7131	3.02 6987	3.00 6874	2.59 6841	74	78	9
	3.18 7611	3.14 7426	3.09 7264	3.06 7116	3.03 7000	<u>3.02</u> 6968	75	79	9
1300	3.22	3.18 7562	3.13	3.09 7246	3.06	3.05	73	81	9
1325	3.26	3.21	3.16 7529	3.12 7375	3.10 7254	3.09 7223	78	83	10
1350	3.29	3.25	3.20	3.16	3.13	3.12 7350	80	84	10
1375	3.33	3.28	3.23	3.19	3.16	3.15			
1400	8176 3.37	7973 3.32	7796 3.26	7635 3.22	7509 3.20	7478 3.19	81	86	10
1425	8318 3.40	8110 3.35	7930 3.30	7765 3.26	7637 3.23	7606 3.22	82	87	10
1450	8460 3.44	8247 3.39	8063 3.33	7896 3.29	7764 3.26	7735 3.25	84	89	10

A320

FLIGHT CREW OPERATING MANUAL

FLIGHT PLANNING

2.05.40

P 10

QUICK DETERMINATION OF F-PLN

SEQ 180 | REV 23

	NG WEIG NR CONDI	HT = 550	00 KG	<u>Cedure :</u> IS/ CG = 3	4	FU	EL CONS	UMED (K	G)
NTI-ICING		HUNING		UG — 3	3.0 %		TIME (I	H.MIN)	
AIR			FLIQUE				CO FUEL	RRECTION (CONSUMP	TION
DIST.			FLIGHT	LEVEL			FL290	KG/1000KG) FL330	FL370
(NM)	290	310	330	350	370	390	FL310	FL350	FL390
1450	8460 3.44	8247 3.39	8063 3.33	7896 3.29	7764 3.26	7735 3.25	84	89	10
1475	8602 3.47	8384 3.42	8197 3.37	8026 3.32	7892 3.30	7863 3.29	85	90	11
1500	8744 3.51	8522 3.46	8332 3.40	8157 3.36	8021 3.33	7990 3.32*	87	92	11
1525	8887 3.55	8660 3.49	8466 3.43	8288 3.39	8149 3.36	8121 3.35*	88	93	11
1550	9029 3.58	8798 3.53	8600 3.47	8419 3.42	8278 3.40	8251 3.39*	90	95	11
1575	9172 4.02	8936 3.56	8735 3.50	8550 3.46	8407 3.43	8400 3.42*	91	96	11
1600	9315 4.05	9075 4.00	8870 3.54	8682 3.49	8536 3.46	8513 3.45*	93	98	12
1625	9458 4.09	9213 4.03	9005 3.57	8813 3.52	8665 3.50	8644 3.49*	94	100	12
1650	9601	9352 4.07	9141 4.00	8945 3.56	8795	8775 3.52*	96	101	12
1675	4.12 9745 4.16	9491 4.10	9276 4.04	9078	3.53 8924	8907	97	103	12
1700	9888 4.20	9630 4.14	9411 4.07	3.59 9210 4.02	3.56 9054 3.59	<u>3.55*</u> 9039 3.59*	99	104	12
1725	10032	9770 4.17	9546 4.11	9342 4.06	9185 4.03	9170 4.02*	100	106	13
1750	10176 4.27	9910 4.21	9682 4.14	9474 4.09	9315 4.06	9303 4.05*	102	108	13
1775	10321 4.30	10050 4.24	9818 4.17	9607 4.12	9446 4.09	9435 4.09*	103	109	13
1800	10465 4.34	10190 4.27	9954 4.21	9740 4.16	9577 4.13	9567 4.12*	105	111	13
1825	10610 4.37	10330 4.31	10090	9873 4.19	9708 4.16	9700 4.15*	106	113	14
1850	10755 4.41	10470 4.34	10226 4.28	10006 4.22	9840 4.19	9833 4.19*	108	114	14
1875	10900 4.45	10611 4.38	10363 4.31	10140 4.26	9972 4.23	9966 4.22*	109	116	14
1900	11045 4.48	10752 4.41	10500 4.34	10273 4.29	10105 4.26	10100 4.26*	111	118	14
1925	11191 4.52	10893 4.45	10637 4.38	10407 4.32	10237 4.29	10233 4.29*	112	119	14
1950	11337 4.55	11034 4.48	10774 4.41	10541 4.36	10370 4.33	10367 4.32*	114	121	15
1975	11483 4.59	11176 4.52	10911 4.45	10675 4.39	10503 4.36	10501 4.36*	115	123	15
2000	11629 5.02	11318 4.55	11049 4.48	10810 4.42	10636 4.39	10635 4.39*	117	124	15
2025	11775 5.06	11460 4.58	11187 4.51	10944 4.46	10769 4.43	10769 4.42*	118	126	15
2050	11922 5.09	11602 5.02	11325 4.55	11079 4.49	10903 4.46	10904 4.46*	120	128	15
2075	12068 5.13	11744 5.05	11463 4.58	11214 4.52	11037 4,49	11039 4.49*	121	129	16

SIMULATOR

FLIGHT CREW OPERATING MANUAL

FLIGHT PLANNING

2.05.40

P 11

QUICK DETERMINATION OF F-PLN

SEQ 180 | REV 23

			T = 550	00 KG			FU	EL CONS	UMED (K	G)
AIR DIST. FLIGHT LEVEL CORRECTION ON FUEL CONSUMPTION (KG/1000KG) 290 310 330 350 370 390 FL30 FL330 FL3 2075 5.13 5.05 4.68 4.52 14.07 14.93 121 129 2100 1215 136 5.09 5.01 11346 11.71 11.74 123 131 2125 12263 1202 100 11.76 11.76 11.76 11.74 123 131 2150 1251 12.17 10.76 11.755 11.755 11.756 11.757 11.759 12.7 136 2175 5.22 5.18 5.11 5.08 5.02 12.9 138 2200 12.94 12.449 12.16 11.89 11.710 11.715 12.9 138 2215 5.24 5.16 5.09 5.06 5.06 130 139 22250 5.33 5.22 5.16			HUMING		UG = 3	13.0 %		TIME (H.MIN)	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	AIR			FUGHT	I EVEI			CO FUEL	RRECTION (CONSUMP	TION
		290	310			370	390	FL290	FL330	FL37(FL39(
		12068	11744	11463	11214	11037	11039			16
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		12215	11887	11601	11349	11171	11174	123	131	16
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		12363	12029	11739	11485	11306	11309	124	133	16
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		12510	12172	11878	11620	11440	11444	126	134	16
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			12315		11756	11575	11579	127	136	17
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		5.27	5.19	5.11	5.06	5.03	5.02*			17
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		5.30	5.22	5.15	5.09	5.06	5.06*			17
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		5.34	5.26	5.18	5.12	5.09	5.09*			17
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		5.37	5.29	5.22	5.16	5.13	5.12*			17
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	5.41	5.33	5.25	5.19	5.16	5.16*			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		5.44	5.36	5.28	5.22	5.19	5.19*			18
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		5.48	5.39	5.32	5.25	5.23	5.22*			18
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2350	5.51	5.43	5.35	5.29	5.26	5.26*			18
2400 5.58 5.50 5.42 5.35 5.33 5.32* 2425 14147 13760 13418 13127 12939 12947 143 153 2450 6.02 5.53 5.45 5.39 5.36 5.36* 2450 14297 13906 13559 13265 13077 13085 144 155 2475 6.09 6.00 5.52 5.48 5.42 5.39 5.36* 2475 6.09 6.00 5.52 5.45 5.43 5.42* 2500 14498 14051 13701 13404 13215 13223 146 157 2500 6.09 6.00 5.52 5.49 5.43 5.42* 2500 14798 14197 13842 13681 13492 13500 149 161 2525 6.16 6.06 5.58 5.52 5.49 5.44 5.49 5.49 5.44 5.49 5.24<	2375					5.29	5.29*	140	150	18
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2400			13277 5.42	12989 5.35	12801 5.33	12809 5.32*	141	152	19
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2425	14147	13760	13418	13127	12939	12947	143	153	19
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2450	14297	13906	13559	13265	13077	13085	144	155	19
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		14448	14051	13701	13404	13215	13223	146	157	19
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	14598	14197	13842	13542	13354	13362	148	159	19
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		14748	14344	13984	13681	13492	13500	149	161	20
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		14898	14490	14126	13820	13631	13639	151	162	20
2600 15199 14784 14411 14099 13910 13917 154 166 2625 15350 14931 14554 6.02 5.59 5.59* 2625 15350 14931 14554 14239 14057 156 168 2650 6.20 6.11 6.05 6.03 6.02* 2650 15501 15078 14697 14379 14197 157 170 2675 15652 15225 14840 14519 14330 14337 159 171		15048	14637	14269	13960	13770	13778	152	164	20
2625 15350 14931 14554 14239 14050 14057 156 168 2650 15501 15078 14697 14379 14190 14197 157 170 2650 15501 15078 14697 14379 14190 14197 157 170 2650 15501 15078 14697 14379 14190 14197 157 170 2650 15652 15225 14840 14519 14330 14337 159 171		15199	14784	14411	14099	13910	13917	154	166	20
2650 15501 15078 14697 14379 14190 14197 157 170 2675 15652 15225 14840 14519 14330 14337 159 171		15350	14931	14554	14239	14050	14057	156	168	21
2030 6.33 6.23 6.15 6.08 6.06 6.05* 2076 15652 15225 14840 14519 14330 14337 159 171	_							157	170	21
		6.33	6.23	6.15	6.08	6.06	6.05*			21
2700 15804 15373 14984 14660 14471 14477 160 173	_	6.36	6.27	6.18	6.11	6.09	6.09*			21

AIRBUS TRAINING

A320

FLIGHT CREW OPERATING MANUAL

FLIGHT PLANNING

2.05.40

P 12

QUICK DETERMINATION OF F-PLN

SEQ 180 | REV 23

ef. landi	NG WEIG	HT = 550		: CEDURE IS			EL CONS	UMED (K	G)
	IR CONDI	TIONING		CG = 3	33.0 %				
NTI-ICING AIR	OFF						TIME (I	<u>1.IMIIN)</u> RRECTION (<u> NI</u>
Am								CONSUMP	
DIST.			FLIGHT	LEVEL				KG/1000KG	
(NM)	290	310	330	350	370	390	FL290 FL310	FL330 FL350	FL370 FL390
2700	15804	15373	14984	14660	14471	14477	160	173	21
2725	6.40 15955	6.30 15521	6.21 15127	6.15 14801	6.13 14612	6.12* 14618	162	175	22
_	6.43	6.33 15669	6.25 15272	6.18 14941	6.16 14753	6.15* 14758	164	177	22
2750	6.47	6.37	6.28	6.21	6.19	6.19*			
2775	16260 6.50	15818 6.40	15416 6.31	15082 6.25	14894 6.23	14899 6.22*	165	179	22
2800	16412 6.53	15966 6.43	15561 6.35	15224 6.28	15036 6.26	15041 6.25*	167	181	22
2825	16564 6.57	16115 6.47	15706 6.38	15366 6.31	15178 6.29	15182 6.29*	169	183	22
2850	16717 7.00	16264 6.50	15851 6.41	15508 6.34	15321 6.33	15324 6.32*	170	184	23
2875	16870 7.04	16413 6.53	15996 6.44	15650	15470 6.36*	15466 6.35*	172	186	23
2900	17023	16563	16142	6.38 15792	15614	15609	174	188	23
2925	7.07	6.57 16713	6.48 16288	6.41 15935	6.39* 15758	6.39* 15751	175	190	23
2950	7.10 17330	7.00	<u>6.51</u> 16434	6.44 16078	6.43* 15903	<u>6.42*</u> 15894	177	192	24
2975	7.14	7.03	6.54 16580	6.48 16221	6.46* 16048	6.45* 16037	179	194	24
3000	7.17	7.07	6.57 16726	6.51 16364	6.49* 16193	6.49* 16181	180	196	24
3025	7.21	7.10	7.01	6.54 16508	6.53* 16338	6.52* 16324	182	198	24
3050	7.24	7.13	7.04	6.58 16652	6.56* 16483	6.55* 16468	184	200	24
3075	7.27	7.16	7.07	7.01	6.59* 16629	6.59* 16612	185	202	25
3100	7.31	7.20	7.10	7.04	7.03*	7.02*	187	204	25

FLIP23D A320-214 CFM56-5B4/P SA3420 03301.000011 0250300 .7801 .00200 120 0300350 55 0 100100 40100 18590 FC0M-02-05-40-012-180

GENERAL

The alternate planning tables allow the flight crew to determine the fuel consumption and time required to cover a given air distance from go-around at destination airport to landing at alternate airport.

These tables are established for :

- Go-around : 100 kg or 220 lb
- Climb profile : 250kt/300kt/M.78
- Long Range Speed
- Descent profile : M.78/300kt/250kt
- Approach and landing at alternate airport : 80 kg or 180 lb (4 minutes)
- ISA
- CG = 33 %
- Normal air conditioning
- Anti ice OFF

<u>Note</u> : 1. In the tables, the asterisk (*) means that a step climb of 4000 feet must be flown to reach the corresponding flight level.

- 2. The flight level shown on the top of each column is the final flight level.
- 3. For each degree Celsius above ISA temperature apply a fuel correction of 0.015 (kg/°C/NM) × △ISA (°C) × Air Distance (NM) or 0.033 (lb/°C/NM) ×△ISA (°C) × Air Distance (NM)

CORRECTION FOR DEVIATION FROM REFERENCE WEIGHT

The alternate planning tables are based on a reference landing weight at alternate. The fuel consumption must be corrected when the actual weight is different from the reference weight.

If it is lower (or greater) than the reference weight, subtract (or add) the value given in the correction part of the table per 1000 kg or 1000 lb below (or above) the reference weight.

AIRBUS TRAINING

"

A320

SIMULATOR

FLIGHT PLANNING

2.05.50

SEQ 180

P 2 REV 23

FLIGHT CREW OPERATING MANUAL

ALTERNATE

ALTERNATE PLANNING FROM DESTINATION TO ALTERNATE AIRPORT GO-AROUND : 100 KG - CLIMB : 250KT/300KT/M.78 - CRUISE : LONG RANGE DESCENT : M.78/300KT/250KT - VMC PROCEDURE : 80 KG (4MIN)										
	AIR CONI	NT AT ALTERNATE = 55000 kg AIR CONDITIONING G OFF			SA 33.0 %	FUEL CONSUMED (KG) TIME (H.MIN)				
AIR Dist.			FLIGHT	LEVEL	-		FUEL	RRECTION (CONSUMP KG/1000KG	TION)	
							FL100	FL140	FL18	

DIST.			<u> </u>	<u>LEVEL</u>		(KG/1000KG)			
(NM)	100	120	140	160	180	200	FL100 FL120	FL140 FL160	FL180 FL200
20	100	120	140	100	100	200	12120		1 2200
40	522 0.12						2		
60	676 0.16	659 0.16	660 0.16				3	4	
80	831 0.19	807 0.20	802 0.20	801 0.19	805 0.19		5	5	5
100	986 0.23	955 0.23	943 0.23	937 0.23	934 0.23	937 0.22	6	5	6
120	1140 0.27	1103 0.27	1085 0.27	1072 0.26	1064 0.26	1061 0.26	7	6	7
140	1296 0.31	1251 0.31	1227 0.30	1208 0.30	1193 0.30	1185 0.29	8	7	8
160	1451 0.34	1400 0.34	1369 0.34	1344 0.33	1323 0.33	1309 0.33	9	8	9
180	1606 0.38	1548 0.38	1511 0.37	1480 0.37	1452 0.36	1434 0.36	10	9	10
200	1762 0.42	1697 0.42	1653 0.41	1616 0.40	1582 0.40	1559 0.40	11	10	11
220	1918 0.46	1846 0.45	1796 0.44	1752 0.44	1712 0.43	1684 0.43	12	11	12
240	2074 0.49	1995 0.49	1938 0.48	1889 0.47	1842 0.47	1809 0.46	13	12	12
260	2231 0.53	2144 0.53	2081 0.51	2025 0.51	1972 0.50	1934 0.50	14	13	13
280	2387 0.57	2294 0.56	2224 0.55	2162 0.54	2103 0.54	2059 0.53	15	14	14
300	2544 1.00	2443 1.00	2367 0.59	2299 0.57	2233 0.57	2184 0.57	16	15	15
320	2701 1.04	2593 1.04	2510 1.02	2436 1.01	2364 1.01	2310 1.00	17	16	16
340	2858 1.08	2743 1.07	2653 1.06	2573 1.04	2494 1.04	2435 1.04	18	16	17
360	3014 1.12	2893 1.11	2796 1.09	2710 1.08	2625 1.08	2561 1.07	19	17	18
380	3171 1.15	3043 1.14	2940 1.13	2847 1.11	2756 1.11	2687 1.11	20	18	19
400	3329 1.19	3193 1.18	3084 1.16	2984 1.15	2886 1.15	2813 1.14	21	19	20
420	3486 1.23	3343 1.22	3227 1.20	3122 1.18	3018 1.18	2939 1.17	22	20	21
440	3643 1.26	3494 1.25	3371 1.23	3259 1.22	3149 1.22	3065 1.21	23	21	22
460	3801 1.30	3644 1.29	3515 1.27	3397 1.25	3280 1.25	3192 1.24	24	22	23
480	3959 1.34	3795 1.32	3659 1.30	3534 1.28	3412 1.29	3318 1.28	25	23	24
500	4117 1.37	3946 1.36	3803 1.34	3672 1.32	3543 1.32	3445 1.31	26	24	25
	R CONDITIO JEL = -0.5 S			NE ANTI ICE UEL = + 3			TOTAL AN		
				0250300 .7801		0300 55 0 100			5 50 002 190

AIRBUS TRAINING

A320

FLIGHT CREW OPERATING MANUAL

(A

FLIGHT PLANNING

2.05.50

Ρ3

ALTERNATE

SEQ 180 **REV 23**

ORMAL A	ng weight Ir conditi	= 55000		ISA CG = 3	4	: 80 KG (4MIN) FUEL CONSUMED (KG)		
AIR DIST.	<u>OFF</u>	FL	.ight level			CO FUEL	ME (H.MIN RRECTION O CONSUMPT (KG/1000KG)	Ň
(NM)	230	270	310	350	390	FL230 FL270	FL310 FL350	FL390
100								C
120	1065 0.25					7		(
140	1183 0.29	1193 0.28				9		C
160	1301 0.32	1303 0.31	1319 0.30			10	10	C
180	1419 0.35	1413 0.34	1422 0.33			11	12	C
200	1538 0.38	1523 0.37	1524 0.36	1531 0.35		12	13	C
220	1656 0.42	1633 0,40	1627 0.39	1628 0.38		13	14	C
240	1775 0.45	1744 0.43	1730 0.42	1724 0.41		14	15	C
260	1893 0.48	1854 0.46	1832 0.45	1822 0.44	1822 0.43	15	16	17
280	2012 0.52	1965 0.49	1935 0.48	1919 0.46	1915 0.46	16	17	18
300	2131 0.55	2076 0.52	2038 0.51	2016 0.49	2009 0.49	17	18	20
320	2250 0.58	2186 0.55	2142 0.54	2113 0.52	2103 0.51	18	19	21
340	2369 1.02	2297 0.58	2245 0.56	2211 0.55	2196 0.54	19	21	23
360	2489 1.05	2408 1.01	2348 0.59	2308 0.58	2290 0.57	20	22	24
380	2608 1.08	2519 1.04	2452 1.02	2406 1.00	2385 0.59	21	23	26
400	2728 1.12	2630 1.07	2555 1.05	2504 1.03	2479 1.02	22	24	27
420	2847 1.15	2742 1.10	2659 1.08	2602 1.06	2573 1.05	23	25	27
440	2967 1.18	2853 1.13	2763 1.11	2700 1.09	2668 1.07	24	26	28
460	3087 1.21	2965 1.16	2867 1.14	2798 1.11	2762 1.10	25	27	30
480	3207 1.25	3076 1.19	2971 1.17	2896 1.14	2857 1.13	26	28	31
500	3327 1.28	3188 1.22	3075 1.20	2994 1.17	2952 1.16	27	29	32

REV 21

SEQ 001

GENERAL

R The ground distance/air distance conversion tables show the air distance for a given ground distance due to the influence of the wind.

The tables are given for:

- M.78
- Long range speed.

2.05.60

SEQ 001 REV 23

P 2

FLIGHT CREW OPERATING MANUAL

GROUND DISTANCE/AIR DISTANCE

<u>M.78</u>

R

GROUND			AIR C		(NM)		
DIST.	TAIL WIND WIND COMPONENTS (KT) HEAD WIN						
(NM)	+ 150	+ 100	+ 50	0	- 50	- 100	- 150
10	7	8	9	10	11	13	15
20	15	16	18	20	23	26	30
30	22	25	27	30	34	39	45
40	30	33	36	40	45	51	60
50	37	41	45	50	56	64	75
100	75	82	90	100	113	129	150
200	150	164	180	200	225	257	300
300	225	245	270	300	338	386	450
400	300	327	360	400	450	514	600
500	375	409	450	500	563	643	750
1000	750	818	900	1000	1125	1286	1501
1500	1125	1227	1350	1500	1688	1929	2251
2000	1500	1636	1800	2000	2248	2572	3001
2500	1875	2045	2250	2500	2813	3215	3752
3000	2250	2454	2700	3000	3375	3858	4502
3500	2624	2863	3150	3500	3938	4501	5252
4000	2999	3272	3600	4000	4500	5144	6003
4500	3374	3681	4050	4500	5063	5787	6753
5000	3749	4090	4500	5000	5626	6430	7503

FLIP23 A320211 M565A1PIP 3410 03301.000011 0250300 .7800 .00000 0 0300350 0 0 77 64 43 61 18590 FCOM-N0-03-50-002-001

2.05.60

P 3

GROUND DISTANCE/AIR DISTANCE

SEQ 001 | REV 22

R LONG RANGE SPEED UP TO FL270

GROUND			AIR C	DISTANCE	(NM)		
DIST.	TAIL WIND WIND COMPONENTS (KT) HEAD WIN						AD WIND
(NM)	+ 150	+ 100	+ 50	0	- 50	- 100	- 150
10	7	8	9	10	11	13	16
20	15	16	18	20	23	27	32
30	22	24	27	30	34	40	48
40	29	32	36	40	46	53	64
50	36	40	45	50	57	66	79
100	73	80	89	100	114	133	159
200	146	160	178	200	228	266	318
300	219	241	267	300	342	398	477
400	292	321	356	400	456	531	635
500	365	401	445	500	570	664	794
1000	730	802	890	1000	1141	1328	1589
1500	1094	1203	1335	1500	1711	1992	2383
2000	1459	1604	1780	2000	2282	2656	3177
2500	1824	2005	2225	2500	2852	3320	3971
3000	2189	2406	2670	3000	3423	3984	4766
3500	2554	2807	3115	3500	3993	4648	5560
4000	2919	3208	3560	4000	4564	5312	6354
4500	3283	3609	4005	4500	5134	5976	7149
5000	3648	4010	4450	5000	5705	6640	7943

FLIP23 A320211 M565A1PIP 3410 03301.000011 0250300 .7801 .00000 0 0300350 0 0 77 64 43 61 18590 FC0M-N0-03-50-003-001

2.05.60

GROUND DISTANCE/AIR DISTANCE

SEQ 001 | REV 21

P 4

LONG RANGE SPEED ABOVE FL270

GROUND			AIR [DISTANCE	(NM)		
DIST.	TAIL WIND WIND COMPONENTS (KT) HEAD WIN						
(NM)	+ 150	+ 100	+ 50	0	- 50	- 100	- 150
10	8	8	9	10	11	13	15
20	15	16	18	20	22	26	30
30	23	25	27	30	34	38	45
40	30	33	36	40	45	51	60
50	38	41	45	50	56	64	75
100	75	82	90	100	112	128	149
200	150	164	180	200	225	256	299
300	226	246	270	300	337	385	448
400	301	328	360	400	449	513	597
500	376	410	450	500	562	641	746
1000	752	820	901	1000	1124	1282	1493
1500	1128	1230	1351	1500	1685	1923	2239
2000	1504	1639	1802	2000	2247	2564	2985
2500	1880	2049	2252	2500	2809	3205	3731
3000	2256	2459	2703	3000	3371	3846	4478
3500	2632	2869	3153	3500	3933	4487	5224
4000	3008	3279	3604	4000	4494	5128	5970
4500	3383	3689	4054	4500	5056	5769	6716
5000	3759	4098	4505	5000	5618	6410	7463

FLIP23 A320211 M565A1PIP 3410 03301.000011 0250300 .7801 .00000 0 0300350 0 0 77 64 43 61 18590 FC 0M-N0-03-50-004-001

FUEL TANKERING

GENERAL

Fuel tankering graphs allow to determine the optimum fuel quantity to be tankered as a function of the fuel price ratio between departure and destination airports. The following pages present for one flight level per page the optimum aircraft takeoff weight depending on the fuel price ratio (departure fuel price divided by destination fuel price) and on the air distance to fly.

The computed optimum takeoff weight is based on the additional fuel consumption needed for the transport of the extra (tankered) fuel and it is the weight at which the maximum profit can be achieved. The quantity of extra fuel that can be loaded is calculated as the difference between the optimum takeoff weight (including extra fuel) and the planned takeoff weight (without fuel tankering).

The graphs are established for :

- FL290, 310, 330, 350, 370, 390
- Air distances from 250 to 2500 $\rm NM$
- Flight profile :

R	Climb	: 250KT/300KT/M.78
	Cruise	: M.78
R	Descent	: M.78/300KT/250KT

Note : 1. If necessary, step climbs are performed to reach the indicated flight levels.

2. The crew/operator has to verify that the found aircraft weight complies with basic aircraft limitations (e.g. max fuel capacity) as well as with mission dependent restrictions (e.g. MLW at destination).

EXAMPLES

R <u>1. Fuel price ratio = 0.942</u>

Cruising Altitude = FL310

- Planned TOW = 64 000 kg (mission weight without fuel tankering)
- R Air Distance = 2250 NM Enter graph on page 2.05.70 P.4. For the given air distance, the optimum fuel tankering weight is 60 000 kg, which is lower than the planned takeoff weight \rightarrow no fuel tankering recommended.

AIRBUS TRAINING A320	FLIGHT PLANNING	2.05.70	P 2
FLIGHT CREW OPERATING MANUAL	FUEL TANKERING	SEQ 030	REV 22

2. Fuel price ratio = 0.914

Cruising Altitude = FL350Planned TOW = 62 000 kg (mission weight without fuel tankering) Air Distance = 1500 NM Enter graph on page 2.05.70 P6.

For the given air distance, the optimum fuel tankering weight is 70 000 kg, which is 8000 kg higher than the planned takeoff weight \rightarrow optimum quantity of extra fuel is 8000 kg.

Check :

- R a) new TOW less than or equal to MTOW from departure airport ;
 - b) total fuel to be loaded less than or equal to maximum fuel capacity ;
 - c) MLW at destination

3. Fuel price ratio = 0.902

Cruising Altitude = FL390

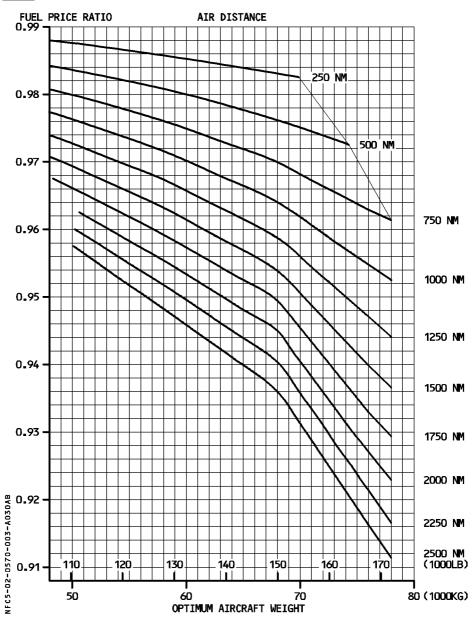
Planned TOW = 56 000 kg (mission weight without fuel tankering)

Air Distance = 1375 NM

Enter graph on page 2.05.70 P8.

Interpolate for the air distance of 1375 NM between the borderline and 1500 NM. For the given air distance, the optimum fuel tankering weight is 60 000 kg, which is 4000 kg higher than the planned takeoff weight \rightarrow optimum quantity of extra fuel is 4000 kg.

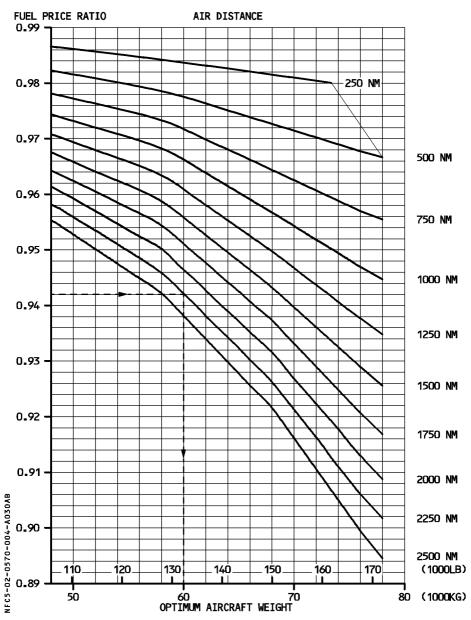
Check :


- R a) new TOW less than or equal to MTOW from departure airport ;
- R b) total fuel to be loaded less than or equal to maximum fuel capacity ;
 - c) MLW at destination

2.05.70

SEQ 030

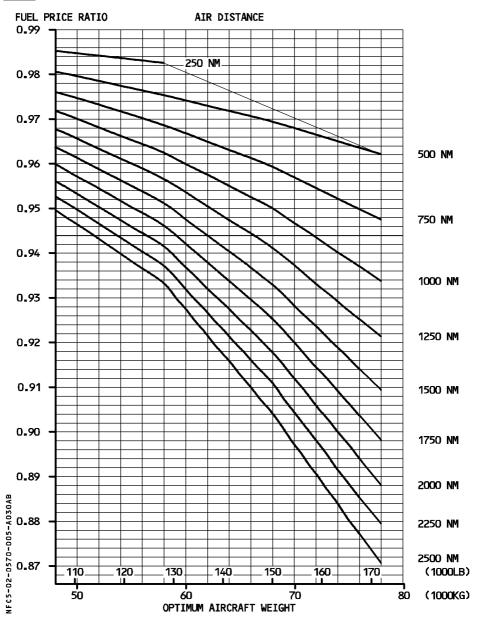
P 3



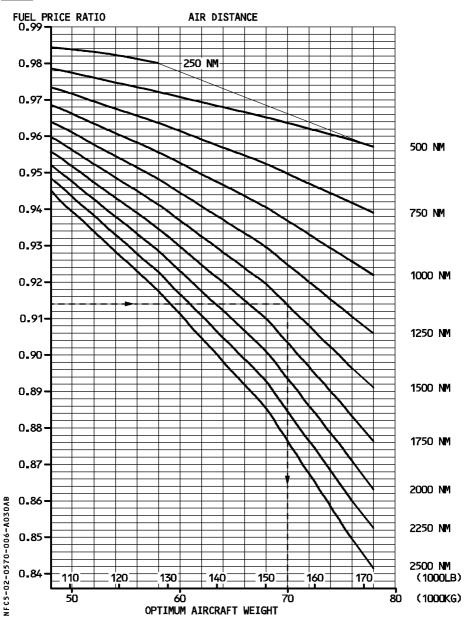
2.05.70

FUEL TANKERING

SEQ 030 REV 21

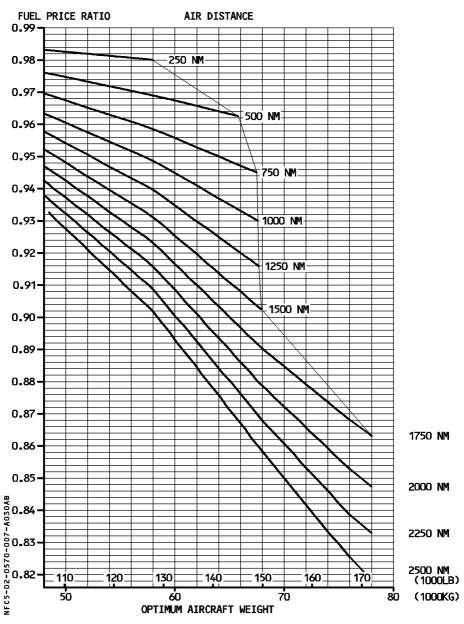

Ρ4

AIRBUS TRAINING
A220
() ^{A320}
SIMULATOR
FLIGHT CREW OPERATING MANUAL


FUEL TANKERING

P 5 REV 21

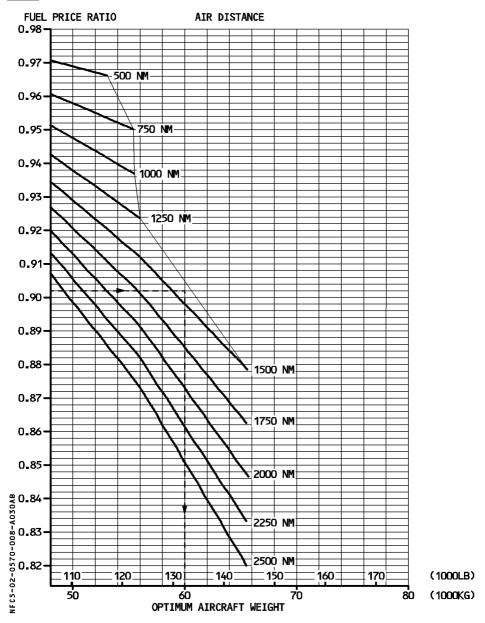
FUEL TANKERING



SEQ 030

) REV 21

P 7


<u>FL370</u>

FUEL TANKERING

SEQ 030 REV 21

P 8

